WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#6 due 11/27/2015
Problem 1. a.) Show that the Dirichlet problem for the Laplace operator satisfies the Lopatinskii condition. Prove $\operatorname{dim} \operatorname{ker} T=0$. (Here T is the operator defined in (2.6.1) in the Lecture Notes.)
b.) Show that the Neumann problem for the Laplace operator in $\Omega \subset \mathbb{R}^{d}$ satisfies the Lopatinskii condition. Prove $\operatorname{dim} \operatorname{ker} T=1$.

Problem 2. Consider the 4×4 first-order differential operator in \mathbb{R}_{+}^{3}

$$
P(\partial) u=\left[\begin{array}{c}
\nabla \times v+\nabla w \\
-\nabla \cdot v
\end{array}\right] .
$$

Here $u=\left[\begin{array}{c}v \\ w\end{array}\right]$ is a vector-valued function with four components, v is a vector-valued function with three components, and the function w is scalar-valued.
a.) Show that the boundary condition $B_{1} u=n \times v$ satisfies the Lopatinskii condition. Here and henceforth $n=-e_{3}$ is the exterior unit normal vector of \mathbb{R}_{+}^{3} along $\partial \mathbb{R}_{+}^{3}$.
b.) Show that the boundary condition $B_{2} u=(n \cdot v, w)$ satisfies the Lopatinskii condition.
c.) Do these two boundary condition satisfy the Lopatinskii condition with respect to the operator

$$
P_{\alpha}(x, \partial) u=\left[\begin{array}{c}
\nabla \times v+\alpha(x) \nabla w \\
-\nabla \cdot(\alpha(x) v)
\end{array}\right]
$$

already considered in Homework \#3? Suppose that α is a 3×3 Hermitian matrix.
Problem 3. Can you find a boundary condition for the system in Problem 2 that does not satisfy the Lopatinskii condition?

