WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#7 due 12/04/2015
Problem 1. Consider the biharmonic operator $P(x, D)=\Delta^{2}=\Delta \Delta$ in a smooth domain Ω together with the boundary conditions

$$
B_{1} u=u, \quad B_{2} u=\frac{\partial u}{\partial n}, \quad B_{3}=\Delta, \quad B_{4}=\frac{\partial}{\partial n} \Delta .
$$

a.) Show that exactly two scalar boundary conditions are needed in order to obtain a well-posed boundary value problem.
b.) Which pairs of boundary conditions satisfy the Lopatinskii condition and which do not?

Problem 2. Let $P(x, \xi)$ be a scalar operator of order m on a smooth domain $\Omega \subset \mathbb{R}^{d}$ and suppose $d \geq 3$. Then for all $x \in \partial \Omega$ and $\xi \perp n(x), \xi \neq 0$ we have the factorization $P_{m}(x, \xi+i \lambda n(x))=P_{+}(x, \xi, \lambda) P_{-}(x, \xi, \lambda)$ where the polynomial P_{+}has only roots with positive real part in λ and the polynomial P_{-}has only roots with negative real part in λ. (One can show that the the polynomials P_{+}and P_{-}can be chosen to have smooth coefficients.) Let B_{1}, \ldots, B_{l} be l scalar boundary conditions where $l=\operatorname{deg} P_{-}$.
a.) Using the fact that the zeros of P are continuous functions of (x, ξ), show that l is independent of (x, ξ). Here the condition $d \geq 3$ is important.
b.) Show that the Lopatinskii condition of Definition 2.5.8 is equivalent to the following condition. The polynomials

$$
B_{j}(x, \xi+i \lambda n(x)), \quad j=1,2, . ., l
$$

are a basis of $\mathbb{C}[\lambda] / P_{-}(x, \xi, \lambda)$ for all $\xi \perp n(x), \xi \neq 0$. Here $\mathbb{C}[\lambda]$ denotes the ring of polynomials with complex coefficients in λ and $\mathbb{C}[\lambda] / P_{-}(x, \xi, \lambda)$ is the quotient ring of $\mathbb{C}[\lambda]$ by the ideal generated by $P_{-}(x, \xi, \lambda)$.

Problem 3. Consider the boundary value problem

$$
\begin{aligned}
P(\partial) u=\left[\begin{array}{cl}
\nabla \times v+\nabla w \\
-\nabla \cdot v
\end{array}\right] & =f
\end{aligned} \begin{aligned}
& \text { in } \Omega \subset \mathbb{R}^{3}, \\
n \times v & =g
\end{aligned} \quad \text { in } \partial \Omega .
$$

Here $u=\left[\begin{array}{c}v \\ w\end{array}\right]$ is a vector-valued function with four components, v is a vector-valued function with three components, and the function w is scalar-valued.
a.) Use the Divergence Theorem (Gauss's Theorem) to find an integration by parts formula for the curl operator. To be more precise, the task is to express the integral

$$
\int_{\Omega}(\nabla \times v) \cdot q d x
$$

where v and q are smooth vector-valued function with three components each, by integrals which do not contain any derivative of v.
b.) Define an unbounded operator $\mathscr{P}: L_{2}(\Omega)^{4} \rightarrow L_{2}(\Omega)^{4}$ with

$$
\mathscr{D}(\mathscr{P})=\left\{u \in H^{1}(\Omega)^{4}: n \times v=0 \text { in } \partial \Omega\right\}
$$

and $\mathscr{P} u=P(\partial) u$. Find the (Hilbert space) adjoint \mathscr{P}^{*} in the sense of unbounded operators. Recall that

$$
\mathscr{D}\left(\mathscr{P}^{*}\right)=\left\{y \in L_{2}(\Omega)^{4}: u \mapsto(\mathscr{P} u, y) \text { is a bounded linear functional on } \mathscr{D}(\mathscr{P})\right\} .
$$

c.) Suppose that Ω is simply connected. Find $\operatorname{ker} T$ and coker T where T is the operator is the continuous linear operator $T: H^{k+1}(\Omega)^{4} \rightarrow H^{k}(\Omega)^{4} \times H^{1 / 2+k}(\partial \Omega)^{3}$ defined by

$$
T u=\left(P(\partial) u, n \times\left. v\right|_{\partial \Omega}\right) .
$$

d.) Use your answer of c.) to describe the solvability of the boundary value problem above. In particular, answer the following question. Is the boundary value problem solvable for all $f \in L_{2}(\Omega)^{4}$ and $g \in H^{1 / 2}(\partial \Omega)^{3}$? Is the solution unique ? What regularity does the solution posses ? If the data are more regular, say $f \in H^{k}(\Omega)^{4}$ and $g \in H^{k+1 / 2}(\partial \Omega)^{3}$ where k is a positive integer, what can you say about the solution?

