WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#9 due 12/19/2015
Problem 1. Consider the homogeneous isotropic elastic wave equations with constant coefficients, that is

$$
\rho \frac{\partial^{2} u}{\partial t^{2}}-\nabla \cdot\left[\mu\left(\nabla u+\nabla u^{T}\right)\right]-\nabla[\lambda \nabla \cdot u]=0 .
$$

Here ρ is the density, μ and λ are the Lamé parameters, and $u:[0, \infty) \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ denotes the displacement. All three coefficients are assumed to be positive constant.
a.) Find solutions of the form $u(t, x)=a e^{\omega t-k \cdot x}$ where ω is a positive constant and $a, k \in \mathbb{R}^{3}$. These solutions are called plane waves.
b.) Characterize your plane wave solutions as longitudinal ($k \| a$) or transversal $(k \perp a)$.

Problem 2. Suppose that P is symmetric hyperbolic and that $A^{0}=I_{N}$. Show that $u \in L_{2}(Q)$ and $P u \in L_{2}(Q)$ implies that $u(t, \cdot) \in H^{-1 / 2}\left(\mathbb{R}^{d}\right)$ for all $t \in[0, T]$. Recall that $Q=(0, T) \times \mathbb{R}^{d}$.

Problem 3. Prove the following simplified version of Lemma 3.2.1: A function $u \in$ $L_{\infty}(Q)$ satisfies $u \in W_{\infty}^{1}\left(\mathbb{R}^{d}\right)$ if and only if u is Lipschitz, i.e., there exists a constant $L>0$ such that $|u(x)-u(y)| \leq L|x-y|$ for all $x, y \in \mathbb{R}^{d}$. (Hint: Use the regularization of functions as decribed in the lecture note before Lemma 3.3.4.)

