
SOMMERSEMESTER 2015 - HÖHERE ANALYSIS II
LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #1 KEY

Problem 1. Suppose that Ω ⊂ Rd is an open, bounded and connected set with a C1-
boundary and exterior unit normal field ν : ∂Ω 7→ Rd. Suppose that u ∈ C2(Ω,R)
satisfies

−∆u = f in Ω,

ν · ∇u = ψ in ∂Ω.

Prove that ∫
∂Ω

ψ(x) dS(x) = −
∫

Ω

f(x) dx.

Proof. Use the divergence theorem∫
Ω

∇ · w dx =

∫
∂Ω

w · ν dS

which is valid for all vector fields w ∈ C1(Rd,Rd). Choose w = ∇u. Then, using
∇ · (∇u) = ∆u one obtains ∫

Ω

∆u dx =

∫
∂Ω

∇u · ν dS .

�

Problem 2. Suppose that u ∈ C(Ω,R) and suppose there exists R > 0 such that
Br(x) ⊂ Ω for all r ≤ R. Here Br(x) = {y ∈ Rd : |y − x| < r} is the open ball with
center at x and radius r. Prove that

lim
r→0+

1

|Br|

∫
Br(x)

u(y) dy = u(x) .

Here |Br| denotes the volume of the d-dimensional ball with radius r.

Proof. Fix ε > 0. Since u is continuous, there exists a δ > 0 such that |x− y| < δ implies
|u(y)− u(x)| < ε. Hence, for r < δ we have

1

|Br|

∫
Br(x)

u(y) dy ≤ 1

|Br|

∫
Br(x)

u(x) dy +
1

|Br|

∫
Br(x)

[u(y)− u(x)] dy

=u(x)
1

|Br(x)|

∫
Br(x)

dx+
1

|Br|

∫
Br(x)

[u(y)− u(x)] dy

=u(x) +
1

|Br|

∫
Br(x)

[u(y)− u(x)] dy .



Thus, for r < δ we have, using the triangle inequality,∣∣∣∣ 1

|Br|

∫
Br(x)

u(y) dy − u(x)

∣∣∣∣ ≤ 1

|Br|

∫
Br(x)

|u(y)− u(x)| dy < ε .

Since the choice of ε was arbitrary, the proof is complete. �

Problem 3. Suppose that u ∈ C1(Rd,R). Prove that∫
BR(0)

u(x) dx =

∫ R

0

[∫
∂Br(0)

u(x)dS(x)

]
dr =

∫ R

0

rd−1

[∫
∂B1(0)

u(ry)dS(y)

]
dr. .

Hint: The equality of the second and the third integral is established by means of an
identity established in the lecture. The first integral can be transformed into an integral
over the unit ball (that is the ball with radius 1) and then differentiated with respect to
R.

Proof. Introduce a function F : [0,∞) 7→ R by

F (R) =

∫
BR(0)

u(x) dx = Rd

∫
B1(0)

u(Ry) dy .

Here a change of variables in the volume integral was performed x = Ry, dx = Rd dy.
Then, using the fact that u is differentiable, one computes using the chain rule

F ′(R) = dRd−1

∫
B1(0)

u(Ry) dy +Rd

∫
B1(0)

d∑
j=1

∂u

∂xj
(Ry) · yj dy

Define now a vector field w(y) = u(Ry)y. Then ∇ · w(y) = u(Ry)d +∇u(Ry)R · y and
we see that using the divergence theorem

F ′(r) = Rd−1

∫
∂B1(0)

w(y)·ν dS(y) = Rd−1

∫
∂B1(0)

w(y)·y dS(y) = Rd−1

∫
∂B1(0)

u(Ry) dS(y) .

By the fundamental theorem of calculus,

d

dR

∫ R

0

rd−1

[∫
∂B1(0)

u(ry)dS(y)

]
dr = Rd−1

∫
∂B1(0)

u(Ry)dS(y)

which proves that the derivative of the first and the third integral coincide. Since both
expressions are zero for R = 0, they have to be the same. It remains to show that the
second integral is equal to the third integral. This follows from the properties of the
surface integral discussed in the lecture on April 21, in particular∫

rΣ

f(x) dS(x) = rd−1

∫
Σ

f(ry) dS(y) ,

where Σ is a regular surface in Rd. �


