SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #10 due 06/28

Problem 1. The Sobolev space $H^s(\mathbb{R})$ for $s \in \mathbb{R}$ is defined as

$$H^{s}(\mathbb{R}^{d}) = \{ u \in \mathscr{S}'(\mathbb{R}^{d}) : (1 + |\xi|^{2})^{s/2} \hat{u} \in L_{2}(\mathbb{R}^{d}) \}$$

with norm

$$\|u\|_{H^s(\mathbb{R}^d)}^2 = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} (1+|\xi|^2)^s |\hat{u}(\xi)|^2 d\xi$$

a.) Prove that $\hat{u} \in L_1(\mathbb{R}^d)$ implies $u \in C(\mathbb{R}^d)$.

b.) Prove that $u \in H^{s}(\mathbb{R}^{d})$ for some s > d/2 implies that $u \in C(\mathbb{R}^{d})$ and the estimate $\sup_{\mathbb{R}^{d}} |u| \leq C ||u||_{H^{s}(\mathbb{R}^{d})}$. This statement is know as Sobolev imbedding theorem.

Problem 2. Suppose that Ω is bounded and open and that $\mu_1 \leq \mu_2, \dots$ are the eigenvalues of the Dirichlet Laplacian.

a.) Prove that

$$\mu_1 = \min\left\{\int_{\Omega} |\nabla u|^2 \, dx \; : \; u \in \mathring{H}^1(\Omega), \|u\|_{L_2(\Omega)} = 1\right\}$$

b.) Denote $S_k = \operatorname{span}[u_1, ..., u_k]$ where the $u_j \in \mathring{H}^1(\Omega)$ is the eigenfunction of the Dirichlet Laplacian corresponding to the eigenvalue μ_j for j = 1, ..., k, and by S_k^{\perp} its orthogonal complement in $\mathring{H}^1(\Omega)$. Prove that

$$\mu_{k+1} = \min\left\{\int_{\Omega} |\nabla u|^2 \, dx : u \in S_k^{\perp}, \|u\|_{L_2(\Omega)} = 1\right\}$$

for k = 1, 2, ...

Problem 3. Prove the monotonicity of the Dirichlet Laplacian with respect to the domain. More precicely, if D is a second open and bounded set and $D \subset \Omega$ show that $\mu_k(\Omega) \leq \mu_k(D)$ for k = 1, 2, ...