
SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II
LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #10 Solutions

Problem 1. The Sobolev space Hs(R) for s ∈ R is defined as

Hs(Rd) = {u ∈ S ′(Rd) : (1 + |ξ|2)s/2û ∈ L2(Rd)}

with norm

‖u‖2
Hs(Rd) =

1

(2π)d

∫
Rd

(1 + |ξ|2)s|û(ξ)|2 dξ .

a.) Prove that û ∈ L1(Rd) implies u ∈ C(Rd).

Proof. Suppose that {xk} ⊂ Rd is a sequence converging to x ∈ Rd. Then

|u(x)− u(xk)| ≤
1

(2π)d

∫
Rd

|eix·ξ − eixk·ξ||û(ξ)|dξ −→ 0

where we used the triangle inequality and the Lebesgue dominated convergence theorem.
�

b.) Prove that u ∈ Hs(Rd) for some s > d/2 implies that u ∈ C(Rd) and the estimate
supRd |u| ≤ C‖u‖Hs(Rd). This statement is know as Sobolev imbedding theorem.

Proof. Note that

sup
x∈R
|u(x)| = sup

x∈R

1

(2π)

∣∣∣∣∫
R
eix·ξû(ξ) dξ

∣∣∣∣ ≤ ‖û‖L1(Rd) .

Furthermore, by Hölder’s inequality∫
Rd

|û(ξ)| dξ =

(∫
Rd

|û(ξ)|2(1 + |ξ|2)s dξ

)1/2(∫
Rd

(1 + |ξ|2)−s dξ

)1/2

The last integral is convergent if s > d/2. This can be shown by introducing polar
(spherical) coordinates in Rd. �

Problem 2. Suppose that Ω is bounded and open and that µ1 ≤ µ2, ... are the
eigenvalues of the Dirichlet Laplacian.
a.) Prove that

µ1 = min

{∫
Ω

|∇u|2 dx : u ∈ H̊1(Ω), ‖u‖L2(Ω) = 1

}
1
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Proof. Let u ∈ H̊1(Ω) such that ‖u‖L2(Ω) = 1. According to Theorem 6.12, there exists an

orthonormal basis ( in L2(Ω) of eigenfunctions uk ∈ H̊1(Ω) for k = 1, 2, ... to the Dirichlet

Laplacian −∆ : H̊1(Ω)→ H−1(Ω). There exist numbers α1, α2, ... ∈ R such that

u =
∞∑
k=1

αkuk

and

(1)
∞∑
k=1

α2
k = 1 .

The eigenfunctions satisfy the identity∫
Ω

|∇uk|2 dx = µk

∫
Ω

|uk|2 dx

Hence, the functions uk/
√
µk are an orthonormal set in H̊1(Ω) and one can show that

they form an orthonormal basis. Then there exist number β1, β2, ... ∈ R such that

u =
∞∑
k=1

βk
uk√
µk

.

Hence, βl =
√
µlαl for l = 1, 2, ... and the series

∑∞
l=1 µlα

2
l is convergent. Using Parseval’s

identity gives ∫
Ω

|∇u|2 dx ==
i∑

j=1

nftyβ2
j =

∞∑
j=1

µjα
2
j ,

and since the eigenvalues are increasing we know that the sum on the right-hand side is
greater or equal to µ1 because of (1). On the other hand, if u = u1, then

∫
Ω
|∇u1| dx =

1. �

b.) Denote Sk = span[u1, ..., uk] where the uj ∈ H̊1(Ω) is the eigenfunction of the Dirichlet
Laplacian corresponding to the eigenvalue µj for j = 1, .., k and by S⊥k its orthogonal

complement in H̊1(Ω). Prove that

µk+1 = min

{∫
Ω

|∇u|2 dx : u ∈ S⊥k , ‖u‖L2(Ω) = 1

}
for k = 1, 2, ....

Proof. Now u =
∑∞

j=k+1 αjuj with
∑∞

j=k+1 α
2
j = 1. Then, using the same approach as in

the first part of the problem∫
Ω

|∇u|2 dx =
∞∑

j=k+1

µjα
2
j ≥ µk+1 ,

and equality holds for u = uk+1. �

Problem 3. Prove the monotonicity of the Dirichlet Laplacian with respect to the
domain. More precicely, if D is a second open and bounded set and D ⊂ Ω show that
µk(Ω) ≤ µk(D) for k = 1, 2, ....



Proof. Using problem 2 we know that

µ1(D) = min

{∫
D

|∇u|2 dx : u ∈ H̊1(D), ‖u‖L2(D) = 1

}
and

µ1(Ω) = min

{∫
Ω

|∇u|2 dx : u ∈ H̊1(Ω), ‖u‖L2(Ω) = 1

}
.

Note that every function u ∈ H̊1(D) can be extended to Ω \D by zero and becomes then

a function in H̊1(Ω). Using this extension we have the inclusion{
u ∈ H̊1(D), ‖u‖L2(D) = 1

}
⊂
{
u ∈ H̊1(Ω), ‖u‖L2(Ω) = 1

}
and µ1(Ω) ≤ µ1(D) follows.

From problem 2 we recall that

µk+1(D) = min

{∫
D

|∇u|2 dx : u ∈ S⊥k (D), ‖u‖L2(D) = 1

}
for k = 1, 2, ... where Sk(D) = span[u1, ...., uk], the linear span of the first k eigenfunctions
of the Dirichlet Laplacian in D. Extending those function by zero to all of Ω, they can
be considered as eigenfunctions of the Dirichlet-Laplacian in Ω. However, there is no
guarantee that for example the function u2 is the eigenfunction corresponding to the
eigenvalue µ2(Ω), it may belong to a bigger eigenvalue. This argument gives the desired
conclusion. �


