SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #11 due 07/05

Problem 1. Suppose that $K : H \to H$ is a compact linear operator on a Hilbert space H. Prove that

a.) $N(I - K) = \{x \in H : Kx = x\}$ is finite-dimensional.

b.) $R(I - K) = \{x - Kx : x \in H\}$ is closed. Hint: Show at first that there exists a constant $\gamma > 0$ such that

 $||u - Ku|| \ge \gamma ||u||$ for all $u \in N(I - K)^{\perp}$.

Problem 2. For $f \in L_2(\mathbb{R}^d)$ use the Fourier transform in space to derive a solution formula for the initial value problem to the heat equation

$$u_t - \Delta u = 0$$
 in $(0, \infty) \times \mathbb{R}^d$
 $u(0, \cdot) = f$ in \mathbb{R}^d .

Problem 3. Suppose that $u \in H^s(\mathbb{R}^d)$ for some s > 1/2. Show that the mapping $T : C_0^{\infty}(\mathbb{R}^d) \to C_0^{\infty}(\mathbb{R}^{d-1})$ given by $Tu(x', x_d) = u(x', 0)$ extends to a continuous linear operator from $H^s(\mathbb{R}^d)$ into $H^{s-1/2}(\mathbb{R}^{d-1})$.