
SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II
LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #11 Solutions

Problem 1. Suppose that K : H → H is a compact linear operator on a Hilbert space
H. Prove that
a.) N(I −K) = {x ∈ H : Kx = x} is finite-dimensional.

Proof. We argue by contradiction. Suppose that {x1, x2, ...} is a sequence of orthonormal
unit vectors such that Kxj = xj for j = 1, 2, .... Then ‖Kxj−Kxl‖ = ‖xj−xl‖ =

√
2 for

all l 6= k. On the other hand, the sequence {xj}∞j=1 is bounded and hence the sequence Kxj
has a convergent subsequence. However, this is not possible since ‖Kxj−Kxl‖ =

√
2. �

b.) R(I −K) = {x −Kx : x ∈ H} is closed. Hint: Show at first that there exists a
constant γ > 0 such that

‖u−Ku‖ ≥ γ‖u‖ for all u ∈ N(I −K)⊥ .

Proof. Again, we argue by contradiction. Suppose the estimate does not hold. Then there
exists a sequence {xj}∞j=1 of unit vectors such that

‖xj −Kxj‖ <
1

j
for j = 1, 2, ...

which implies

(1) Kxj − xj → 0

in H. Since the sequence {xj} is bounded, there exists a weakly convergent subsequence
which we denote for simplicity again by {xj}, that is xj ⇀ x ∈ H. Since K is compact,
we have Kxj → Kx in H and because of (1) one obtains xj → x in H. Consequently, we
have x = Kx which gives x ∈ N(I −K) and

(xj, x) = 0 for k = 1, 2, ...

Letting j →∞ gives ‖x‖ = 0 which is a contradiction to ‖xj‖ = 1 for all j ∈ N.
Suppose now that yj ∈ R(I − K) for j = 1, 2, ... and that yj → y ∈ H. We have

yj = xj − Kxj for some xj ∈ H, j = 1, 2, ... and we need to find a x ∈ H such that
y = x−Kx. Without loss of generality we may assume that xj ∈ N(I −K)⊥. Otherwise
we can take the orthogonal projection of xj onto N(I−K) and subtract it from xj. Then
we know from the first part of the proof that

‖xj − xl‖ ≤
1

γ
‖xj − xl −K(xj − xl)‖ =

1

γ
‖yj − yl‖ for all l, j ∈ N .

This shows that {xj} is a Cauchy sequence and by completeness of H we have xj → x ∈ H
and then also y = x−Kx. �
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Problem 2. For f ∈ L2(Rd) use the Fourier transform in space to derive a solution
formula for the initial value problem to the heat equation

ut −∆u = 0 in (0,∞)× Rd ,

u(0, ·) = f in Rd .

Solution. Set f̂(ξ) =
∫
Rd e

−ix·ξf(x) dx and û(t, ξ) =
∫
Rd e

−x·ξu(t, x) dx where the first
Fourier transform is to be understood in the L2 sense and the second one is just a formal
one in order to transform the PDE into an ODE with a parameter. On obtains

ût + |ξ|2û = 0 in (0,∞)× Rd ,

û(0, ·) = f̂ in Rd .

The solution to this IVP is given by

û(t, ξ) = e−|ξ|
2tf̂(ξ)

Note that û(t, ·) ∈ L2(Rd) for all t ∈ (0,∞). Actually, one even has (̂t, ξ) ∈ S (Rd) for all
t > 0. Hence, one can invert the Fourier transform and obtains

u(t, x) =
1

(2π)d

∫
eix·ξe−|ξ|

2tf̂(ξ) dξ .

Now, since

F−1(e−|ξ|
2t) =

1

(4πt)d/2
e−|x|

2/(4t) or F

(
1

(4πt)d/2
e−|x|

2/(4t)

)
= e−|ξ|

2t

and conclude that

u(t, x) =
1

(4πt)d/2
e−|x|

2/(4t) ∗ f(x) =
1

(4πt)d/2

∫
Rd

e−|x−y|
2/(4t)f(y) dy .

Note that this formula coincides with the one given in Theorem 7.3. It is also possible
to give a regularity statement of the solution with L2 initial data. In particular one
concludes with the aid of Parseval’s identity that u(t, ·) ∈ L2(Rd) for all t > 0 and that
‖u(t, ·)‖L2(Rd) ≤ ‖f‖L2(Rd).

Problem 3. Suppose that u ∈ Hs(Rd) for some s > 1/2. Show that the mapping
T : C∞0 (Rd) → C∞0 (Rd−1) given by Tu(x′, xd) = u(x′, 0) extends to a continuous linear
operator from Hs(Rd) into Hs−1/2(Rd−1).

Proof. Suppose that u ∈ C∞0 (Rd) and let g = Tu ∈ C∞0 (Rd−1). Note at first that

g(x′) =
1

(2π)d

∫
Rd

eix
′·ξ′û(ξ)dξ =

1

(2π)(d−1)

∫
Rd−1

eix
′·ξ′
{

1

2π

∫
R
û(ξ)dξd

}
dξ′

which, after applying the Fourier transform with respect to the x′ variable, results in

ĝ(ξ′) =
1

2π

∫
R
û(ξ) dξd .



For brevity we set 〈ξ〉 =
√

1 + |ξ|2. Then, using the Cauchy-Schwarz inequality

‖g‖2H1/2(Rd−1) =
1

(2π)d−1

∫
Rd+1

〈ξ′〉|ĝ(ξ′)|2 dξ′

=
1

(2π)d+1

∫
Rd+1

〈ξ′〉s−1/2
∣∣∣∣∫

R
û(ξ)dξd

∣∣∣∣2 dξ′
≤ 1

(2π)d+1

∫
〈ξ′〉s−1/2

{∫
R
|û(ξ)|2〈ξ〉sdξd

∫
R
〈ξ〉)−sdξd

}
dξ′

=
1

(2π)d+1

∫
Rd−1

{∫
R
|û(ξ)|2〈ξ〉sdξd

∫
R

〈ξ′〉s−1/2

〈ξ〉s
dξd

}
dξ′ .

Now one computes the integral using the substitution z = ξd/
√

1 + |ξ′|2 and observes
that ∫

R

(1 + |ξ′|2)s−1/2

(1 + |ξ|2)s
dξd =

∫
R

(1 + |ξ′|2)s−1/2

(1 + |ξ′|2 + ξ2d)
s
dξd =

∫
R

dz

(1 + |z|2)s
= Cs <∞

for s > 1/2. One concludes ‖g‖2
H1/2(Rd−1)

≤ C‖u‖2
H1(Rd)

for some positive constant C

depending on s. Using a density argument this shows that the operator T extends to a
continuous, linear operator from H1(Rd) into H1/2(Rd−1). �


