SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#11 Solutions

Problem 1. Suppose that $K: H \rightarrow H$ is a compact linear operator on a Hilbert space H. Prove that
a.) $N(I-K)=\{x \in H: K x=x\}$ is finite-dimensional.

Proof. We argue by contradiction. Suppose that $\left\{x_{1}, x_{2}, \ldots\right\}$ is a sequence of orthonormal unit vectors such that $K x_{j}=x_{j}$ for $j=1,2, \ldots$ Then $\left\|K x_{j}-K x_{l}\right\|=\left\|x_{j}-x_{l}\right\|=\sqrt{2}$ for all $l \neq k$. On the other hand, the sequence $\left\{x_{j}\right\}_{j=1}^{\infty}$ is bounded and hence the sequence $K x_{j}$ has a convergent subsequence. However, this is not possible since $\left\|K x_{j}-K x_{l}\right\|=\sqrt{2}$.
b.) $R(I-K)=\{x-K x: x \in H\}$ is closed. Hint: Show at first that there exists a constant $\gamma>0$ such that

$$
\|u-K u\| \geq \gamma\|u\| \quad \text { for all } u \in N(I-K)^{\perp} .
$$

Proof. Again, we argue by contradiction. Suppose the estimate does not hold. Then there exists a sequence $\left\{x_{j}\right\}_{j=1}^{\infty}$ of unit vectors such that

$$
\left\|x_{j}-K x_{j}\right\|<\frac{1}{j} \quad \text { for } j=1,2, \ldots
$$

which implies

$$
\begin{equation*}
K x_{j}-x_{j} \rightarrow 0 \tag{1}
\end{equation*}
$$

in H. Since the sequence $\left\{x_{j}\right\}$ is bounded, there exists a weakly convergent subsequence which we denote for simplicity again by $\left\{x_{j}\right\}$, that is $x_{j} \rightharpoonup x \in H$. Since K is compact, we have $K x_{j} \rightarrow K x$ in H and because of (1) one obtains $x_{j} \rightarrow x$ in H. Consequently, we have $x=K x$ which gives $x \in N(I-K)$ and

$$
\left(x_{j}, x\right)=0 \quad \text { for } k=1,2, \ldots
$$

Letting $j \rightarrow \infty$ gives $\|x\|=0$ which is a contradiction to $\left\|x_{j}\right\|=1$ for all $j \in \mathbb{N}$.
Suppose now that $y_{j} \in R(I-K)$ for $j=1,2, \ldots$ and that $y_{j} \rightarrow y \in H$. We have $y_{j}=x_{j}-K x_{j}$ for some $x_{j} \in H, j=1,2, \ldots$ and we need to find a $x \in H$ such that $y=x-K x$. Without loss of generality we may assume that $x_{j} \in N(I-K)^{\perp}$. Otherwise we can take the orthogonal projection of x_{j} onto $N(I-K)$ and subtract it from x_{j}. Then we know from the first part of the proof that

$$
\left\|x_{j}-x_{l}\right\| \leq \frac{1}{\gamma}\left\|x_{j}-x_{l}-K\left(x_{j}-x_{l}\right)\right\|=\frac{1}{\gamma}\left\|y_{j}-y_{l}\right\| \quad \text { for all } l, j \in \mathbb{N} .
$$

This shows that $\left\{x_{j}\right\}$ is a Cauchy sequence and by completeness of H we have $x_{j} \rightarrow x \in H$ and then also $y=x-K x$.

Problem 2. For $f \in L_{2}\left(\mathbb{R}^{d}\right)$ use the Fourier transform in space to derive a solution formula for the initial value problem to the heat equation

$$
\begin{aligned}
u_{t}-\Delta u=0 & \text { in }(0, \infty) \times \mathbb{R}^{d} \\
u(0, \cdot)=f & \text { in } \mathbb{R}^{d} .
\end{aligned}
$$

Solution. Set $\hat{f}(\xi)=\int_{\mathbb{R}^{d}} e^{-i x \cdot \xi} f(x) d x$ and $\hat{u}(t, \xi)=\int_{\mathbb{R}^{d}} e^{-x \cdot \xi} u(t, x) d x$ where the first Fourier transform is to be understood in the L_{2} sense and the second one is just a formal one in order to transform the PDE into an ODE with a parameter. On obtains

$$
\begin{aligned}
\hat{u}_{t}+|\xi|^{2} \hat{u} & =0 \quad \text { in }(0, \infty) \times \mathbb{R}^{d}, \\
\hat{u}(0, \cdot)=\hat{f} & \text { in } \mathbb{R}^{d} .
\end{aligned}
$$

The solution to this IVP is given by

$$
\hat{u}(t, \xi)=e^{-|\xi|^{2} t} \hat{f}(\xi)
$$

 $t>0$. Hence, one can invert the Fourier transform and obtains

$$
u(t, x)=\frac{1}{(2 \pi)^{d}} \int e^{i x \cdot \xi} e^{-|\xi|^{2} t} \hat{f}(\xi) d \xi
$$

Now, since

$$
\mathscr{F}^{-1}\left(e^{-|\xi|^{2} t}\right)=\frac{1}{(4 \pi t)^{d / 2}} e^{-|x|^{2} /(4 t)} \quad \text { or } \quad \mathscr{F}\left(\frac{1}{(4 \pi t)^{d / 2}} e^{-|x|^{2} /(4 t)}\right)=e^{-|\xi|^{2} t}
$$

and conclude that

$$
u(t, x)=\frac{1}{(4 \pi t)^{d / 2}} e^{-|x|^{2} /(4 t)} * f(x)=\frac{1}{(4 \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{-|x-y|^{2} /(4 t)} f(y) d y
$$

Note that this formula coincides with the one given in Theorem 7.3. It is also possible to give a regularity statement of the solution with L_{2} initial data. In particular one concludes with the aid of Parseval's identity that $u(t, \cdot) \in L_{2}\left(\mathbb{R}^{d}\right)$ for all $t>0$ and that $\|u(t, \cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)} \leq\|f\|_{L_{2}\left(\mathbb{R}^{d}\right)}$.
Problem 3. Suppose that $u \in H^{s}\left(\mathbb{R}^{d}\right)$ for some $s>1 / 2$. Show that the mapping $T: C_{0}^{\infty}\left(\mathbb{R}^{d}\right) \rightarrow C_{0}^{\infty}\left(\mathbb{R}^{d-1}\right)$ given by $T u\left(x^{\prime}, x_{d}\right)=u\left(x^{\prime}, 0\right)$ extends to a continuous linear operator from $H^{s}\left(\mathbb{R}^{d}\right)$ into $H^{s-1 / 2}\left(\mathbb{R}^{d-1}\right)$.

Proof. Suppose that $u \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ and let $g=T u \in C_{0}^{\infty}\left(\mathbb{R}^{d-1}\right)$. Note at first that

$$
g\left(x^{\prime}\right)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{i x^{\prime} \cdot \xi^{\prime}} \hat{u}(\xi) d \xi=\frac{1}{(2 \pi)^{(d-1)}} \int_{\mathbb{R}^{d-1}} e^{i x^{\prime} \cdot \xi^{\prime}}\left\{\frac{1}{2 \pi} \int_{\mathbb{R}} \hat{u}(\xi) d \xi_{d}\right\} d \xi^{\prime}
$$

which, after applying the Fourier transform with respect to the x^{\prime} variable, results in

$$
\hat{g}\left(\xi^{\prime}\right)=\frac{1}{2 \pi} \int_{\mathbb{R}} \hat{u}(\xi) d \xi_{d}
$$

For brevity we set $\langle\xi\rangle=\sqrt{1+|\xi|^{2}}$. Then, using the Cauchy-Schwarz inequality

$$
\begin{aligned}
\|g\|_{H^{1 / 2}\left(\mathbb{R}^{d-1}\right)}^{2} & =\frac{1}{(2 \pi)^{d-1}} \int_{\mathbb{R}^{d+1}}\left\langle\xi^{\prime}\right\rangle\left|\hat{g}\left(\xi^{\prime}\right)\right|^{2} d \xi^{\prime} \\
& =\frac{1}{(2 \pi)^{d+1}} \int_{\mathbb{R}^{d+1}}\left\langle\xi^{\prime}\right\rangle^{s-1 / 2}\left|\int_{\mathbb{R}} \hat{u}(\xi) d \xi_{d}\right|^{2} d \xi^{\prime} \\
& \left.\leq \frac{1}{(2 \pi)^{d+1}} \int\left\langle\xi^{\prime}\right\rangle^{s-1 / 2}\left\{\int_{\mathbb{R}}|\hat{u}(\xi)|^{2}\langle\xi\rangle^{s} d \xi_{d} \int_{\mathbb{R}}\langle\xi\rangle\right)^{-s} d \xi_{d}\right\} d \xi^{\prime} \\
& =\frac{1}{(2 \pi)^{d+1}} \int_{\mathbb{R}^{d-1}}\left\{\int_{\mathbb{R}}|\hat{u}(\xi)|^{2}\langle\xi\rangle^{s} d \xi_{d} \int_{\mathbb{R}} \frac{\left\langle\xi^{\prime}\right\rangle^{s-1 / 2}}{\langle\xi\rangle^{s}} d \xi_{d}\right\} d \xi^{\prime} .
\end{aligned}
$$

Now one computes the integral using the substitution $z=\xi_{d} / \sqrt{1+\left|\xi^{\prime}\right|^{2}}$ and observes that

$$
\int_{\mathbb{R}} \frac{\left(1+\left|\xi^{\prime}\right|^{2}\right)^{s-1 / 2}}{\left(1+|\xi|^{2}\right)^{s}} d \xi_{d}=\int_{\mathbb{R}} \frac{\left(1+\left|\xi^{\prime}\right|^{2}\right)^{s-1 / 2}}{\left(1+\left|\xi^{\prime}\right|^{2}+\xi_{d}^{2}\right)^{s}} d \xi_{d}=\int_{\mathbb{R}} \frac{d z}{\left(1+|z|^{2}\right)^{s}}=C_{s}<\infty
$$

for $s>1 / 2$. One concludes $\|g\|_{H^{1 / 2}\left(\mathbb{R}^{d-1}\right)}^{2} \leq C\|u\|_{H^{1}\left(\mathbb{R}^{d}\right)}^{2}$ for some positive constant C depending on s. Using a density argument this shows that the operator T extends to a continuous, linear operator from $H^{1}\left(\mathbb{R}^{d}\right)$ into $H^{1 / 2}\left(\mathbb{R}^{d-1}\right)$.

