SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #12 due 07/12

Problem 1. Suppose that $K : H \to H$ is a compact linear operator on a Hilbert space H and K^* is the adjoint. Prove the following statements. a.) $N(I - K^*)^{\perp} = R(I - K)$. Hint: Make use of Problem 1 from the previous week. b.) R(I - K) = H if and only if $N(I - K) = \{0\}$.

Problem 2. For $f \in L_2(\mathbb{R}^d)$ use the Fourier transform in space to derive a solution formula for the initial value problem to the Schrödinger equation

$$iu_t - \Delta_x u = 0$$
 in $(0, \infty) \times \mathbb{R}^d$,
 $u(0, \cdot) = f$ in \mathbb{R}^d .

Here $i = \sqrt{-1}$.

Problem 3. Find a fundamental solution to the Schrödinger operator, that is a distribution $\Phi(t, x) \in \mathscr{D}'(\mathbb{R}^{d+1})$ that satisfies

 $i\partial_t \Phi = \Delta_x \Phi$ for $t \neq 0, x \in \mathbb{R}^d$ and $\Phi(0, x) = \delta_0$ for $x \in \mathbb{R}^d$.

Hint: Use Problem 2 and Lemma 7.2, which also explains how to understand the condition $\Phi(0, x) = \delta_0$.