SOMMERSEMESTER 2016 - HOHERE ANALYSIS II
LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #12 Solutions

Problem 1. Suppose that K : H — H is a compact linear operator on a Hilbert space
H and K* is the adjoint. Prove the following statements.
a.) N(I — K*)* = R(I — K). Hint: Make use of Problem 1 from the previous week.

Proof. Recall that R(I — K) is closed, see HW #11, problem 1. Hence, it will suffice to
show N(I — K*) = R(I — K)*.

Choose z € H. Then z = 2 — Kz € R(I — K). Suppose now that y € R(I — K)*, that
is (y,x) = 0. This implies
O:(y,Z—KZ):(y,Z)—(y,KZ):(y,Z)—(K*y, ) ( K*y,Z) forall z € H .
Hence we have shown that y € N(I — K*) and thus R(I — K)* C N(I — K*).

To show the opposite inclusion, suppose that x € N(I — K*)*, that is

(x,(I —K)z)=(I—-K")z,2) =0 forall z€ H .

Hence, z € R(I — K)* and thus N(I}) C R(I — K)*. O
b.) R(I — K) = H if and only if N(I — K) = {0}.

Proof. 7<=" We argue by contradiction. Suppose N(I — K) = {0} and that H; :=

R(I — K) € H. According to last week’s homework problem, H; is a closed subspace.

Define now inductively a sequence of closed subspaces Hy 1 = (I — K)Hy for k=1,2,....

Note that Hy,, = (I — K)*(I — K)H C Hy and Hy,; C Hj since N(I — K) = {0}.
Choose now unit vectors x;, € Hj, such that z; € Hk{rl. Then, for all [,k € N,

KCL‘k — K[L‘l = —(ZL‘k — K{L‘k) + ({L‘l — K(L’l) + T — 2
and we observe xy — Kxy € Hyp1, 1 — Koy € Hyp, oy € Hy, and x; € Hit,. For k > 1
we have because of the inclusion Hy; C Hp C H;yq that
|Kxp — Kay|| = || — (vp — Kay) + (v — Kaxy) + x| + [Jz]) > 1

This is a contradiction to the compactness of K since it prevents the existence of a
converging subsequence.

”=" Suppose that R(I — K) = H. Then, by part a.) we know that N(I — K*) = {0}
and by the first part of this proof gives R(I — K*) = H. Use part a.) with K replaced
by K* to conclude that N(I — K) = {0}. O

Problem 2. For f € Lo(R?) use the Fourier transform in space to derive a solution
formula for the initial value problem to the Schrédinger equation

iug — Ayu =0 in (0,00) x R?
u(0,-)=f inR?.
Here i = /—1.



Solution. After Fourier transform in z one obtains the initial value problem

N

ity (t, wi) = —[€[*a(t, &)t €[0,00), a(0,€) = f(€), for all £ € R? .
The solution to this problem is given by
i = P f(E)
and using the inverse Fourier transform, one obtains the formula

where we note that u(t,-) € Ly(R?) for all t € R, since f € Ly(R?). The inverse Fourier
transform can be computed using the formula

ut,z) = F e M) (¢, 2) * f(a) .
The amazing fact is that formula discussed last week (07/05/2016)

Fle ] = (E>d/2 e I/t >0
a

is even true all a € C satisfying 8¢« > 0 and a # 0. Hence, one obtains choosing
a = 1/(4t7) that

11 —itlel? _ b e
F e |(t, z) (47rz't)d/2€ ;
whence .
_ —|z—y|?/(4ti)
u(t,x)—<4ﬁit)d/24d€ fy)dy .

Problem 3. Find a fundamental solution to the Schrodinger operator, that is a distri-
bution ®(¢,r) € 2'(R**1) that satisfies

i0,®=A,®fort#£0,2 €¢R? and &(0,2) =y for x € R? .
Hint: Use problem 2 and Lemma 7.2, which also explains how to understand the condition
@(O, l’) = 50.
Solution. Set .
A CLD)
O(t,x) =4 (Arit)i2 or =0,
0 for t<0.
We will show that ®(t, ) — dg as t, — 0F. Choose a sequence t, > 0 for k = 1,2, ...
such that ¢, — 0. From problem 2 we know that
F[D(t,))(€) = eI
and given u € .%(R?) we have
D(ty, ) (a) = / Py ey de — [ u(€)de =a(0) as k — oo
Rd

Rd



