SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#12 Solutions

Problem 1. Suppose that $K: H \rightarrow H$ is a compact linear operator on a Hilbert space H and K^{*} is the adjoint. Prove the following statements.
a.) $N\left(I-K^{*}\right)^{\perp}=R(I-K)$. Hint: Make use of Problem 1 from the previous week.

Proof. Recall that $R(I-K)$ is closed, see HW \#11, problem 1. Hence, it will suffice to show $N\left(I-K^{*}\right)=R(I-K)^{\perp}$.

Choose $z \in H$. Then $x=z-K z \in R(I-K)$. Suppose now that $y \in R(I-K)^{\perp}$, that is $(y, x)=0$. This implies
$0=(y, z-K z)=(y, z)-(y, K z)=(y, z)-\left(K^{*} y, z\right)=\left(y-K^{*} y, z\right) \quad$ for all $z \in H$.
Hence we have shown that $y \in N\left(I-K^{*}\right)$ and thus $R(I-K)^{\perp} \subset N\left(I-K^{*}\right)$.
To show the opposite inclusion, suppose that $x \in N\left(I-K^{*}\right)^{\perp}$, that is

$$
(x,(I-K) z)=\left(\left(I-K^{*}\right) x, z\right)=0 \quad \text { for all } z \in H .
$$

Hence, $x \in R(I-K)^{\perp}$ and thus $N\left(I_{K}^{*}\right) \subset R(I-K)^{\perp}$.
b.) $R(I-K)=H$ if and only if $N(I-K)=\{0\}$.

Proof. " \Longleftarrow " We argue by contradiction. Suppose $N(I-K)=\{0\}$ and that $H_{1}:=$ $R(I-K) \subsetneq H$. According to last week's homework problem, H_{1} is a closed subspace. Define now inductively a sequence of closed subspaces $H_{k+1}=(I-K) H_{k}$ for $k=1,2, \ldots$. Note that $H_{k+1}=(I-K)^{k}(I-K) H \subset H_{k}$ and $H_{k+1} \subsetneq H_{k}$ since $N(I-K)=\{0\}$.

Choose now unit vectors $x_{k} \in H_{k}$ such that $x_{k} \in H_{k+1}^{\perp}$. Then, for all $l, k \in \mathbb{N}$,

$$
K x_{k}-K x_{l}=-\left(x_{k}-K x_{k}\right)+\left(x_{l}-K x_{l}\right)+x_{k}-x_{l}
$$

and we observe $x_{k}-K x_{k} \in H_{k+1}, x_{l}-K x_{l} \in H_{l+1}, x_{k} \in H_{k}$, and $x_{l} \in H_{l+1}^{\perp}$. For $k>l$ we have because of the inclusion $H_{k+1} \subset H_{k} \subset H_{l+1}$ that

$$
\left\|K x_{k}-K x_{l}\right\|=\left\|-\left(x_{k}-K x_{k}\right)+\left(x_{l}-K x_{l}\right)+x_{k}\right\|+\left\|x_{l}\right\| \geq 1
$$

This is a contradiction to the compactness of K since it prevents the existence of a converging subsequence.
$" \Longrightarrow "$ Suppose that $R(I-K)=H$. Then, by part a.) we know that $N\left(I-K^{*}\right)=\{0\}$ and by the first part of this proof gives $R\left(I-K^{*}\right)=H$. Use part a.) with K replaced by K^{*} to conclude that $N(I-K)=\{0\}$.
Problem 2. For $f \in L_{2}\left(\mathbb{R}^{d}\right)$ use the Fourier transform in space to derive a solution formula for the initial value problem to the Schrödinger equation

$$
\begin{aligned}
i u_{t}-\Delta_{x} u=0 & \text { in }(0, \infty) \times \mathbb{R}^{d} \\
u(0, \cdot)=f & \text { in } \mathbb{R}^{d}
\end{aligned}
$$

Here $i=\sqrt{-1}$.

Solution. After Fourier transform in x one obtains the initial value problem

$$
i \hat{u}_{t}(t, x i)=-|\xi|^{2} \hat{u}(t, \xi) \quad t \in[0, \infty), \quad \hat{u}(0, \xi)=\hat{f}(\xi), \quad \text { for all } \xi \in \mathbb{R}^{d}
$$

The solution to this problem is given by

$$
\hat{u}_{t}=e^{-i t|\xi|^{2}} \hat{f}(\xi),
$$

and using the inverse Fourier transform, one obtains the formula

$$
u(t, x)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{i x \cdot \xi} e^{-i t|\xi|^{2}} \hat{f}(\xi) d \xi
$$

where we note that $u(t, \cdot) \in L_{2}\left(\mathbb{R}^{d}\right)$ for all $t \in \mathbb{R}$, since $f \in L_{2}\left(\mathbb{R}^{d}\right)$. The inverse Fourier transform can be computed using the formula

$$
u(t, x)=\mathscr{F}^{-1}\left[e^{-i t|\xi|^{2}}\right](t, x) * f(x) .
$$

The amazing fact is that formula discussed last week $(07 / 05 / 2016)$

$$
\mathscr{F}\left[e^{-a|x|^{2}}\right]=\left(\frac{\pi}{a}\right)^{d / 2} e^{-|\xi|^{2} /(4 a)} \quad a>0
$$

is even true all $a \in \mathbb{C}$ satisfying $\Re a \geq 0$ and $a \neq 0$. Hence, one obtains choosing $a=1 /(4 t i)$ that

$$
\mathscr{F}^{-1}\left[e^{-i t|\xi|^{2}}\right](t, x)=\frac{1}{(4 \pi i t)^{d / 2}} e^{-|x|^{2} /(4 t i)},
$$

whence

$$
u(t, x)=\frac{1}{(4 \pi i t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{-|x-y|^{2} /(4 t i)} f(y) d y .
$$

Problem 3. Find a fundamental solution to the Schrödinger operator, that is a distribution $\Phi(t, x) \in \mathscr{D}^{\prime}\left(\mathbb{R}^{d+1}\right)$ that satisfies

$$
i \partial_{t} \Phi=\Delta_{x} \Phi \text { for } t \neq 0, x \in \mathbb{R}^{d} \quad \text { and } \quad \Phi(0, x)=\delta_{0} \text { for } x \in \mathbb{R}^{d} .
$$

Hint: Use problem 2 and Lemma 7.2, which also explains how to understand the condition $\Phi(0, x)=\delta_{0}$.
Solution. Set

$$
\Phi(t, x)=\left\{\begin{array}{cc}
\frac{1}{(4 \pi i t)^{d / 2}} e^{-|x|^{2} /(4 t i)} & \text { for } \quad t>0 \\
0 & \text { for } \quad t \leq 0
\end{array}\right.
$$

We will show that $\Phi\left(t_{k}, \cdot\right) \rightarrow \delta_{0}$ as $t_{k} \rightarrow 0^{+}$. Choose a sequence $t_{k} \geq 0$ for $k=1,2, \ldots$ such that $t_{k} \rightarrow 0$. From problem 2 we know that

$$
\mathscr{F}\left[\Phi\left(t_{k}, \cdot\right)\right](\xi)=e^{i t_{k}|\xi|^{2}}
$$

and given $u \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ we have

$$
\Phi\left(t_{k}, \cdot\right)(\hat{u})=\int_{\mathbb{R}^{d}} e^{i t_{k}|\xi|^{2}} u(\xi) d \xi \rightarrow \int_{\mathbb{R}^{d}} u(\xi) d \xi=\hat{u}(0) \quad \text { as } k \rightarrow \infty .
$$

