
SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II
LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #12 Solutions

Problem 1. Suppose that K : H → H is a compact linear operator on a Hilbert space
H and K∗ is the adjoint. Prove the following statements.
a.) N(I −K∗)⊥ = R(I −K). Hint: Make use of Problem 1 from the previous week.

Proof. Recall that R(I −K) is closed, see HW #11, problem 1. Hence, it will suffice to
show N(I −K∗) = R(I −K)⊥.

Choose z ∈ H. Then x = z −Kz ∈ R(I −K). Suppose now that y ∈ R(I −K)⊥, that
is (y, x) = 0. This implies

0 = (y, z −Kz) = (y, z)− (y,Kz) = (y, z)− (K∗y, z) = (y −K∗y, z) for all z ∈ H .

Hence we have shown that y ∈ N(I −K∗) and thus R(I −K)⊥ ⊂ N(I −K∗).
To show the opposite inclusion, suppose that x ∈ N(I −K∗)⊥, that is

(x, (I −K)z) = ((I −K∗)x, z) = 0 for all z ∈ H .

Hence, x ∈ R(I −K)⊥ and thus N(I∗K) ⊂ R(I −K)⊥. �

b.) R(I −K) = H if and only if N(I −K) = {0}.

Proof. ”⇐=” We argue by contradiction. Suppose N(I − K) = {0} and that H1 :=
R(I − K) ( H. According to last week’s homework problem, H1 is a closed subspace.
Define now inductively a sequence of closed subspaces Hk+1 = (I −K)Hk for k = 1, 2, ....
Note that Hk+1 = (I −K)k(I −K)H ⊂ Hk and Hk+1 ( Hk since N(I −K) = {0}.

Choose now unit vectors xk ∈ Hk such that xk ∈ H⊥k+1. Then, for all l, k ∈ N,

Kxk −Kxl = −(xk −Kxk) + (xl −Kxl) + xk − xl
and we observe xk −Kxk ∈ Hk+1, xl −Kxl ∈ Hl+1, xk ∈ Hk, and xl ∈ H⊥l+1. For k > l
we have because of the inclusion Hk+1 ⊂ Hk ⊂ Hl+1 that

‖Kxk −Kxl‖ = ‖ − (xk −Kxk) + (xl −Kxl) + xk‖+ ‖xl‖ ≥ 1

This is a contradiction to the compactness of K since it prevents the existence of a
converging subsequence.

”=⇒” Suppose that R(I −K) = H. Then, by part a.) we know that N(I −K∗) = {0}
and by the first part of this proof gives R(I −K∗) = H. Use part a.) with K replaced
by K∗ to conclude that N(I −K) = {0}. �

Problem 2. For f ∈ L2(Rd) use the Fourier transform in space to derive a solution
formula for the initial value problem to the Schrödinger equation

iut −∆xu = 0 in (0,∞)× Rd ,

u(0, ·) = f in Rd .

Here i =
√
−1.
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Solution. After Fourier transform in x one obtains the initial value problem

iût(t, xi) = −|ξ|2û(t, ξ) t ∈ [0,∞), û(0, ξ) = f̂(ξ) , for all ξ ∈ Rd .

The solution to this problem is given by

ût = e−it|ξ|
2

f̂(ξ) ,

and using the inverse Fourier transform, one obtains the formula

u(t, x) =
1

(2π)d

∫
Rd

eix·ξe−it|ξ|
2

f̂(ξ) dξ

where we note that u(t, ·) ∈ L2(Rd) for all t ∈ R, since f ∈ L2(Rd). The inverse Fourier
transform can be computed using the formula

u(t, x) = F−1[e−it|ξ|
2

](t, x) ∗ f(x) .

The amazing fact is that formula discussed last week (07/05/2016)

F [e−a|x|
2

] =
(π
a

)d/2
e−|ξ|

2/(4a) a > 0

is even true all a ∈ C satisfying <a ≥ 0 and a 6= 0. Hence, one obtains choosing
a = 1/(4ti) that

F−1[e−it|ξ|
2

](t, x) =
1

(4πit)d/2
e−|x|

2/(4ti) ,

whence

u(t, x) =
1

(4πit)d/2

∫
Rd

e−|x−y|
2/(4ti)f(y) dy .

Problem 3. Find a fundamental solution to the Schrödinger operator, that is a distri-
bution Φ(t, x) ∈ D ′(Rd+1) that satisfies

i∂tΦ = ∆xΦ for t 6= 0, x ∈ Rd and Φ(0, x) = δ0 for x ∈ Rd .

Hint: Use problem 2 and Lemma 7.2, which also explains how to understand the condition
Φ(0, x) = δ0.

Solution. Set

Φ(t, x) =


1

(4πit)d/2
e−|x|

2/(4ti) for t > 0 ,

0 for t ≤ 0 .

We will show that Φ(tk, ·) → δ0 as tk → 0+. Choose a sequence tk ≥ 0 for k = 1, 2, ...
such that tk → 0. From problem 2 we know that

F [Φ(tk, ·)](ξ) = eitk|ξ|
2

and given u ∈ S (Rd) we have

Φ(tk, ·)(û) =

∫
Rd

eitk|ξ|
2

u(ξ) dξ →
∫
Rd

u(ξ) dξ = û(0) as k →∞ .


