SOMMERSEMESTER 2016 - HOHERE ANALYSIS II
LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #13 Solutions

Problem 1. Using the Fourier transform in x, solve the initial value problem for the
wave equation in the whole space R?
Uy — Au=0 in (0,00) x R?,

u(0,2) = f(z) =R,

u(0,2) = g(z) xR,
Assuming that f satisfies Vf € Ly(RY) and that g € Ly(R?), what can you say about the
regularity of the solution ?
Solution. Using the Fourier transform in z, the initial value problem is transferred to

the following initial value problem for a second order ordinary differential equation with
parameter &,

ﬂtt + C2|§|2ﬂ =0 ) a(07 ) - f ) at(07 ) - g .
The solution to this problem is given by

a(t,6) = 7€) cos(elélt) + g@% |

and inverting the Fourier transfrom gives a solution formula for w. This formula will be
the same as the one presented in Theorem 9.1, at least in the case that d = 3. However,
a statement regarding the regularity can be made at the level of the Fourier transform.
If Vf,g e Ly(R), then § € Ly(R%) and |€|f € Ly(R%). Consequently, since cos(c|¢|t) and
sin(c|é|t) are both bounded by one, one knows that

€l 1at, &) < €117 )] +13(€)]
which implies that V,u(t, ) € Ly (0, 00; Lo(RY)).
Problem 2. Consider the following initial-boundary value problem for the heat equation
on the interval (0, ), that is
Ou=0%u (t,r)in [0,00) x (0,7),
u(0,2) = f(x) we(0,m),
u(t,0) =u(t,7) =0 ¢t € (0,00).

Given f € Ly(0, ) follow the proof of Theorem 8.10 to construct an infinite series solution
to this problem. In this case you can work with the eigenfunctions of the operator d?/dx? :

HY(0,7) — H™'(0,7) and use the fact that the odd extension of f € Ly(0,7) to the
interval (—m, ) can be expanded into a Fourier sine series.
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Solution. Note that the eigenfunctions on the operator —d*/dx?® with zero boundary
conditions on the interval (0, ) are given by

v, = sin(nz) n=12 ..

with corresponding eigenvalue )\, = n?. Following the proof of Theorem 8.10, we set

v, = span|vy, Vg, ..., v,]. Furthermore, since f € Ly(0,7) we have the Fourier expansion

f= g:lfnvn , fn = %/OW f(z)sin(nmx) dx |

with the series converging in Ls(0, 7). Then one builds approximate solutions

un(t, ) = Y ap(t)ve()

which are solutions to the initial value problem for a first-order system with n equations:

(Z a;ﬁ(t)vknvj) + (Z ak(t)v;,v;) =0 forj=1,2,...n,
k=1 k=1

Z Oék(O)Uk<£IZ'> = Z fk'Uk .

Since the {v,} form an orthogonal set, the system decouples, and one obtains n scalar
initial value problems

Oé;g(t>+k206k(t) :O, Oék(()) :fk s k= 1,2,...,77,,

which has the unique solution «a; = ekt fr- Hence, the approximate solution is
un(ta CL’) = Z fke_thUk(x) :
k=1
The proof of Theorem 8.10 shows that the infinite series
u(t,z) = fre o ()
k=1

is in Ly(0,T; HY(0, 7)) N H*(0,T; H()) and is a weak solution to the initial value
problem above.

Problem 3.* Consider the following initial value problem
Wy — Weyp, + Nw =0 fortec (0,00), 2, €R,
w(0,z1) =0 forall z; e R,
wi(0,21) = ¢(z1) forallzy e R,

where A > 0 is a real parameter. Given ¢ € C?(R) show that the classical solution to this
problem is given by

w(t,z;) = %/“ JoA/12 = (z1 — y1)2) (1) dyr

1—t




where
) w/2
Jo(A) = ;/ cos(Asin z) dz
0

is the Bessel function of order zero. Hint: If w is a solution to the equation above that
the function u(t, ) = cos(Ara)w(t, z1) is a solution to the wave equation in R; x R?. Use
then Theorem 9.3 to write a formula for u(¢,z) in terms of the initial data and use a
substitution in the integral.

Solution. One verifies that the function u(¢, x) solves the wave equation in d = 2 and that
u(0,z) = 0 and that u:(0,z) = cos(Azx2)y(x1). Hence, using Theorem 9.3

_ i cos(Ay2)1 (y1)
= o /x yi<t /T — (x —y)? !

Now this integral is evaluated. We have

/x1+t/mz+ —(z1—y1)? COS(Ay2)¢(y1) ddeyl
7 27T T \/ —(z1—y1)? \/02t2 _y)2

xr1+t
/ cos(A(xg + \/t2 (x1 — y1)?sin z))dzdy,
27T —7/2

where we used the substitutlon

dys
2 —(z —y)?
Using the addition theorem for the cosine function one obtains from here

)\ x1+t
u(t,z) = cos(Ar / / cos(A/t2 — (21 — y1)? sin 2)dzdy,
—7/2

1 x1+t
-3 / ToOWE= (o = pP)(an) dus

1—t

=dz.

Yo = (22 + /12 — (x1 —y1)?) sinz,




