
SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II
LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #13 Solutions

Problem 1. Using the Fourier transform in x, solve the initial value problem for the
wave equation in the whole space Rd

utt − c2∆u = 0 in (0,∞)× Rd ,

u(0, x) = f(x) x ∈ Rd ,

ut(0, x) = g(x) x ∈ Rd .

Assuming that f satisfies ∇f ∈ L2(Rd) and that g ∈ L2(Rd), what can you say about the
regularity of the solution ?
Solution. Using the Fourier transform in x, the initial value problem is transferred to
the following initial value problem for a second order ordinary differential equation with
parameter ξ,

ûtt + c2|ξ|2û = 0 , û(0, ·) = f̂ , ût(0, ·) = ĝ .

The solution to this problem is given by

û(t, ξ) = f̂(ξ) cos(c|ξ|t) + ĝ(ξ)
sin(c|ξ|t)
c|ξ|

.

and inverting the Fourier transfrom gives a solution formula for u. This formula will be
the same as the one presented in Theorem 9.1, at least in the case that d = 3. However,
a statement regarding the regularity can be made at the level of the Fourier transform.
If ∇f, g ∈ L2(Rd), then ĝ ∈ L2(Rd) and |ξ|f̂ ∈ L2(Rd). Consequently, since cos(c|ξ|t) and
sin(c|ξ|t) are both bounded by one, one knows that

|ξ| |û(t, ξ)| ≤ |ξ| |f̂(ξ)|+ |ĝ(ξ)|

which implies that ∇xu(t, ·) ∈ L∞(0,∞;L2(Rd)).

Problem 2. Consider the following initial-boundary value problem for the heat equation
on the interval (0, π), that is

∂tu = ∂2xxu (t, x) in [0,∞)× (0, π) ,

u(0, x) = f(x) x ∈ (0, π) ,

u(t, 0) = u(t, π) = 0 t ∈ (0,∞) .

Given f ∈ L2(0, π) follow the proof of Theorem 8.10 to construct an infinite series solution
to this problem. In this case you can work with the eigenfunctions of the operator d2/dx2 :

H̊1(0, π) → H−1(0, π) and use the fact that the odd extension of f ∈ L2(0, π) to the
interval (−π, π) can be expanded into a Fourier sine series.
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Solution. Note that the eigenfunctions on the operator −d2/dx2 with zero boundary
conditions on the interval (0, π) are given by

vn = sin(nx) n = 1, 2, ...

with corresponding eigenvalue λn = n2. Following the proof of Theorem 8.10, we set
vn = span[v1, v2, ..., vn]. Furthermore, since f ∈ L2(0, π) we have the Fourier expansion

f =
∞∑
n=1

fnvn , fn =
2

π

∫ π

0

f(x) sin(nπx) dx ,

with the series converging in L2(0, π). Then one builds approximate solutions

un(t, x) =
n∑
k=1

αk(t)vk(x)

which are solutions to the initial value problem for a first-order system with n equations:(
n∑
k=1

α′k(t)vk, vj

)
+

(
n∑
k=1

αk(t)v
′
k, v
′
j

)
= 0 for j = 1, 2, ..., n ,

n∑
k=1

αk(0)vk(x) =
n∑
k=1

fkvk .

Since the {vn} form an orthogonal set, the system decouples, and one obtains n scalar
initial value problems

α′k(t) + k2αk(t) = 0 , αk(0) = fk , k = 1, 2, ..., n ,

which has the unique solution αk = e−k
2tfk. Hence, the approximate solution is

un(t, x) =
n∑
k=1

fke
−k2tvk(x) .

The proof of Theorem 8.10 shows that the infinite series

u(t, x) =
∞∑
k=1

fke
−k2tvk(x)

is in L2(0, T ; H̊1(0, π)) ∩ H1(0, T ;H−1(Ω)) and is a weak solution to the initial value
problem above.

Problem 3.* Consider the following initial value problem

wtt − wx1x1 + λ2w = 0 for t ∈ (0,∞), x1 ∈ R ,

w(0, x1) = 0 for all x1 ∈ R ,

wt(0, x1) = ψ(x1) for all x1 ∈ R ,

where λ > 0 is a real parameter. Given ψ ∈ C2(R) show that the classical solution to this
problem is given by

w(t, x1) =
1

2

∫ x1+t

x1−t
J0(λ

√
t2 − (x1 − y1)2)ψ(y1) dy1 ,



where

J0(λ) =
2

π

∫ π/2

0

cos(λ sin z) dz

is the Bessel function of order zero. Hint: If w is a solution to the equation above that
the function u(t, x) = cos(λx2)w(t, x1) is a solution to the wave equation in Rt×R2. Use
then Theorem 9.3 to write a formula for u(t, x) in terms of the initial data and use a
substitution in the integral.

Solution. One verifies that the function u(t, x) solves the wave equation in d = 2 and that
u(0, x) = 0 and that ut(0, x) = cos(λx2)ψ(x1). Hence, using Theorem 9.3

u(t, x) =
1

2π

∫
|x−y|<t

cos(λy2)ψ(y1)√
t2 − (x− y)2

dy

Now this integral is evaluated. We have

u(t, x) =
1

2π

∫ x1+t

x1−t

∫ x2+
√
t2−(x1−y1)2

x2−
√
t2−(x1−y1)2

cos(λy2)ψ(y1)√
c2t2 − (x− y)2

dy2dy1

=
1

2π

∫ x1+t

x1−t

∫ π/2

−π/2
cos(λ(x2 +

√
t2 − (x1 − y1)2 sin z))dzdy1

where we used the substitution

y2 = (x2 +
√
t2 − (x1 − y1)2) sin z ,

dy2√
t2 − (x− y)2

= dz .

Using the addition theorem for the cosine function one obtains from here

u(t, x) =
cos(λx2)

2π

∫ x1+t

x1−t

∫ π/2

−π/2
cos(λ

√
t2 − (x1 − y1)2 sin z)dzdy1

=
1

2

∫ x1+t

x1−t
J0(λ

√
t2 − (x1 − y1)2)ψ(y1) dy1 .


