SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#13 Solutions

Problem 1. Using the Fourier transform in x, solve the initial value problem for the wave equation in the whole space \mathbb{R}^{d}

$$
\begin{aligned}
u_{t t}-c^{2} \Delta u & =0 \quad \text { in }(0, \infty) \times \mathbb{R}^{d}, \\
u(0, x) & =f(x) \quad x \in \mathbb{R}^{d}, \\
u_{t}(0, x) & =g(x) \quad x \in \mathbb{R}^{d} .
\end{aligned}
$$

Assuming that f satisfies $\nabla f \in L_{2}\left(\mathbb{R}^{d}\right)$ and that $g \in L_{2}\left(\mathbb{R}^{d}\right)$, what can you say about the regularity of the solution?
Solution. Using the Fourier transform in x, the initial value problem is transferred to the following initial value problem for a second order ordinary differential equation with parameter ξ,

$$
\hat{u}_{t t}+c^{2}|\xi|^{2} \hat{u}=0, \quad \hat{u}(0, \cdot)=\hat{f}, \quad \hat{u}_{t}(0, \cdot)=\hat{g} .
$$

The solution to this problem is given by

$$
\hat{u}(t, \xi)=\hat{f}(\xi) \cos (c|\xi| t)+\hat{g}(\xi) \frac{\sin (c|\xi| t)}{c|\xi|}
$$

and inverting the Fourier transfrom gives a solution formula for u. This formula will be the same as the one presented in Theorem 9.1, at least in the case that $d=3$. However, a statement regarding the regularity can be made at the level of the Fourier transform. If $\nabla f, g \in L_{2}\left(\mathbb{R}^{d}\right)$, then $\hat{g} \in L_{2}\left(\mathbb{R}^{d}\right)$ and $|\xi| \hat{f} \in L_{2}\left(\mathbb{R}^{d}\right)$. Consequently, since $\cos (c|\xi| t)$ and $\sin (c|\xi| t)$ are both bounded by one, one knows that

$$
|\xi||\hat{u}(t, \xi)| \leq|\xi||\hat{f}(\xi)|+|\hat{g}(\xi)|
$$

which implies that $\nabla_{x} u(t, \cdot) \in L_{\infty}\left(0, \infty ; L_{2}\left(\mathbb{R}^{d}\right)\right)$.
Problem 2. Consider the following initial-boundary value problem for the heat equation on the interval $(0, \pi)$, that is

$$
\begin{aligned}
\partial_{t} u & =\partial_{x x}^{2} u \quad(t, x) \text { in }[0, \infty) \times(0, \pi), \\
u(0, x) & =f(x) \quad x \in(0, \pi) \\
u(t, 0)=u(t, \pi) & =0 \quad t \in(0, \infty)
\end{aligned}
$$

Given $f \in L_{2}(0, \pi)$ follow the proof of Theorem 8.10 to construct an infinite series solution to this problem. In this case you can work with the eigenfunctions of the operator $d^{2} / d x^{2}$: $\dot{H}^{1}(0, \pi) \rightarrow H^{-1}(0, \pi)$ and use the fact that the odd extension of $f \in L_{2}(0, \pi)$ to the interval $(-\pi, \pi)$ can be expanded into a Fourier sine series.

Solution. Note that the eigenfunctions on the operator $-d^{2} / d x^{2}$ with zero boundary conditions on the interval $(0, \pi)$ are given by

$$
v_{n}=\sin (n x) \quad n=1,2, \ldots
$$

with corresponding eigenvalue $\lambda_{n}=n^{2}$. Following the proof of Theorem 8.10, we set $v_{n}=\operatorname{span}\left[v_{1}, v_{2}, \ldots, v_{n}\right]$. Furthermore, since $f \in L_{2}(0, \pi)$ we have the Fourier expansion

$$
f=\sum_{n=1}^{\infty} f_{n} v_{n}, \quad f_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n \pi x) d x
$$

with the series converging in $L_{2}(0, \pi)$. Then one builds approximate solutions

$$
u_{n}(t, x)=\sum_{k=1}^{n} \alpha_{k}(t) v_{k}(x)
$$

which are solutions to the initial value problem for a first-order system with n equations:

$$
\begin{aligned}
\left(\sum_{k=1}^{n} \alpha_{k}^{\prime}(t) v_{k}, v_{j}\right)+\left(\sum_{k=1}^{n} \alpha_{k}(t) v_{k}^{\prime}, v_{j}^{\prime}\right) & =0 \quad \text { for } j=1,2, \ldots, n \\
\sum_{k=1}^{n} \alpha_{k}(0) v_{k}(x) & =\sum_{k=1}^{n} f_{k} v_{k}
\end{aligned}
$$

Since the $\left\{v_{n}\right\}$ form an orthogonal set, the system decouples, and one obtains n scalar initial value problems

$$
\alpha_{k}^{\prime}(t)+k^{2} \alpha_{k}(t)=0, \quad \alpha_{k}(0)=f_{k}, \quad k=1,2, \ldots, n
$$

which has the unique solution $\alpha_{k}=e^{-k^{2} t} f_{k}$. Hence, the approximate solution is

$$
u_{n}(t, x)=\sum_{k=1}^{n} f_{k} e^{-k^{2} t} v_{k}(x) .
$$

The proof of Theorem 8.10 shows that the infinite series

$$
u(t, x)=\sum_{k=1}^{\infty} f_{k} e^{-k^{2} t} v_{k}(x)
$$

is in $L_{2}\left(0, T ; \dot{H}^{1}(0, \pi)\right) \cap H^{1}\left(0, T ; H^{-1}(\Omega)\right)$ and is a weak solution to the initial value problem above.
Problem 3.* Consider the following initial value problem

$$
\begin{aligned}
w_{t t}-w_{x_{1} x_{1}}+\lambda^{2} w & =0 \quad \text { for } t \in(0, \infty), x_{1} \in \mathbb{R}, \\
w\left(0, x_{1}\right) & =0 \quad \text { for all } x_{1} \in \mathbb{R}, \\
w_{t}\left(0, x_{1}\right) & =\psi\left(x_{1}\right) \quad \text { for all } x_{1} \in \mathbb{R},
\end{aligned}
$$

where $\lambda>0$ is a real parameter. Given $\psi \in C^{2}(\mathbb{R})$ show that the classical solution to this problem is given by

$$
w\left(t, x_{1}\right)=\frac{1}{2} \int_{x_{1}-t}^{x_{1}+t} J_{0}\left(\lambda \sqrt{t^{2}-\left(x_{1}-y_{1}\right)^{2}}\right) \psi\left(y_{1}\right) d y_{1}
$$

where

$$
J_{0}(\lambda)=\frac{2}{\pi} \int_{0}^{\pi / 2} \cos (\lambda \sin z) d z
$$

is the Bessel function of order zero. Hint: If w is a solution to the equation above that the function $u(t, x)=\cos \left(\lambda x_{2}\right) w\left(t, x_{1}\right)$ is a solution to the wave equation in $\mathbb{R}_{t} \times \mathbb{R}^{2}$. Use then Theorem 9.3 to write a formula for $u(t, x)$ in terms of the initial data and use a substitution in the integral.
Solution. One verifies that the function $u(t, x)$ solves the wave equation in $d=2$ and that $u(0, x)=0$ and that $u_{t}(0, x)=\cos \left(\lambda x_{2}\right) \psi\left(x_{1}\right)$. Hence, using Theorem 9.3

$$
u(t, x)=\frac{1}{2 \pi} \int_{|x-y|<t} \frac{\cos \left(\lambda y_{2}\right) \psi\left(y_{1}\right)}{\sqrt{t^{2}-(x-y)^{2}}} d y
$$

Now this integral is evaluated. We have

$$
\begin{aligned}
u(t, x) & =\frac{1}{2 \pi} \int_{x_{1}-t}^{x_{1}+t} \int_{x_{2}-\sqrt{t^{2}-\left(x_{1}-y_{1}\right)^{2}}}^{x_{2}+\sqrt{t^{2}-\left(x_{1}-y_{1}\right)^{2}}} \frac{\cos \left(\lambda y_{2}\right) \psi\left(y_{1}\right)}{\sqrt{c^{2} t^{2}-(x-y)^{2}}} d y_{2} d y_{1} \\
& =\frac{1}{2 \pi} \int_{x_{1}-t}^{x_{1}+t} \int_{-\pi / 2}^{\pi / 2} \cos \left(\lambda\left(x_{2}+\sqrt{t^{2}-\left(x_{1}-y_{1}\right)^{2}} \sin z\right)\right) d z d y_{1}
\end{aligned}
$$

where we used the substitution

$$
y_{2}=\left(x_{2}+\sqrt{t^{2}-\left(x_{1}-y_{1}\right)^{2}}\right) \sin z, \quad \frac{d y_{2}}{\sqrt{t^{2}-(x-y)^{2}}}=d z .
$$

Using the addition theorem for the cosine function one obtains from here

$$
\begin{aligned}
u(t, x) & =\frac{\cos \left(\lambda x_{2}\right)}{2 \pi} \int_{x_{1}-t}^{x_{1}+t} \int_{-\pi / 2}^{\pi / 2} \cos \left(\lambda \sqrt{t^{2}-\left(x_{1}-y_{1}\right)^{2}} \sin z\right) d z d y_{1} \\
& =\frac{1}{2} \int_{x_{1}-t}^{x_{1}+t} J_{0}\left(\lambda \sqrt{t^{2}-\left(x_{1}-y_{1}\right)^{2}}\right) \psi\left(y_{1}\right) d y_{1}
\end{aligned}
$$

