SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#2 Solutions

Problem 1. Suppose that $\Sigma \subset \mathbb{R}^{d}$ is a regular hypersurface, that is there exists an open set $U \subset \mathbb{R}^{d-1}$ and an injective function $x \in C^{1}\left(U, \mathbb{R}^{d}\right)$ such that $x(U)=\Sigma$ and that the rank of the Jacobian matrix $D x$ is equal to $d-1$ for all $u \in U$. The pair (U, x) is a parametrization of Σ.

Suppose that (V, y) is another parametrization of Σ. Prove that for all $f \in C(\Sigma)$ we have

$$
\int_{U} f(x(u)) \sqrt{\operatorname{det}\left[D x(u)^{T} D x(u)\right]} d u=\int_{V} f(y(v)) \sqrt{\operatorname{det}\left[D y(v)^{T} D y(v)\right]} d v .
$$

Note that this identity shows that the definition of the surface integral $\int_{\Sigma} f d S$ given in the lecture is independent of the parametrization used.

Proof. Define $g=y^{-1} \circ x$. Then $g U \rightarrow V$ is a diffeomorphism of class C^{1}. Using the transformation formula for multiple integrals

$$
\int_{g(U)} h(v) d v=\int_{U} h(g(u))|\operatorname{det} D g(u)| d u
$$

gives with $h(v)=f(y(v)) \sqrt{\operatorname{det}\left[D y(v)^{T} D y(v)\right]}$ since by the chain rule $D x=D y D g$

$$
\begin{aligned}
\int_{V} f(y(v)) \sqrt{\operatorname{det}\left[D y(v)^{T} D y(v)\right]} d v & =\int_{U} f(x(u)) \sqrt{\left[D x D g^{-1}\right]^{T} D x D g^{-1}}|\operatorname{det} D g| d u \\
& =\int_{U} f(x(u)) \sqrt{D g^{-T} D x^{T} D x D g^{-1}}|\operatorname{det} D g(u)| d u \\
& =\int_{U} f(x(u)) \sqrt{D x^{T} D x} \sqrt{D g^{-1}} \sqrt{D g^{-1}}|\operatorname{det} D g(u)| d u \\
& =\int_{U} f(x(u)) \sqrt{D x(u)^{T} D x(u)} d u
\end{aligned}
$$

where the product rule of the determinant was used.
The fact that g is a diffeomorphm is not obvious. This follows from the fact that Σ is a regular surface and can be proved as in Proposition 3.1.9 in [1].
Problem 2. Prove the converse of Theorem 2.2: Suppose that $\Omega \subset \mathbb{R}^{d}$ open, $u \in$ $C^{2}(\Omega, \mathbb{R})$, and that

$$
u(x)=\frac{1}{\left|\partial B_{r}(x)\right|} \int_{\partial B_{r}(x)} u(y) d S(y)
$$

for all $B_{r}(x) \subset \Omega$. Then $\Delta u=0$ in Ω.

Proof. Fix x and $r>0$, then for all $0<s<r$, the function

$$
\Phi(s)=\frac{1}{\left|\partial B_{s}(x)\right|} \int_{\partial B_{s}(x)} u(y) d S(y)
$$

is constant. On the other hand, as in the proof of Theorem 2.2 in the lecture, one computes

$$
\Phi^{\prime}(s)=\left|\partial B_{s}(x)\right| \int_{B_{s}(x)} \Delta u(y) d y
$$

Hence, the integral of Δu over any ball inside of Ω vanishes. Consequently $\Delta u=0$ in Ω.

Problem 3. Suppose that $a \in \mathbb{R}, u_{0} \in C^{1}(\mathbb{R})$, and that $f \in C^{1}\left(\mathbb{R}^{2}\right)$. Use the method of characteristics to find a solution to the initial value problem

$$
\left\{\begin{array}{rl}
\partial_{t} u+a \partial_{x} u & =f(t, x) \\
u(0, x) & =u_{0}(x)
\end{array} \quad(t, x) \in \mathbb{R}^{2},\right.
$$

Let $\gamma(t)=(t$, at $+\underline{x})$ be the characteristic line through the point $(0, \underline{x})$. Along this line a solution u to the differential equation above satisfies the ordinary differential equation

$$
\frac{d}{d t} u(y(t))=f(\gamma(t)) .
$$

Integration over the time interval $(0, t)$ gives

$$
u(t, a t+\underline{x})-u(0, \underline{x})=\int_{0}^{t} f(s, a s+\underline{x}) d s
$$

Now set $x=a t+\underline{x}$. Then

$$
u(t, x)-u(0, x-a t)=\int_{0}^{t} f(s, x-a(t-s)) d s
$$

and using the initial condition one obtains

$$
u(t, x)=u_{0}(x-a t)+\int_{0}^{t} f(s, x-a(t-s)) d s
$$

References

[1] Christian Bär. Elementary differential geometry. Cambridge University Press, Cambridge, 2010. Translated from the 2001 German original by P. Meerkamp.

