SOMMERSEMESTER 2016-HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#3 due 5/10

Problem 1. Let $x \in \mathbb{R}^{d}$ be a column vector and let I be the $d \times d$ identity matrix. Prove that $\operatorname{det}\left(I+x x^{T}\right)=1+|x|^{2}$.
Problem 2. Compute the distributional derivative $\frac{d^{4}}{d x^{4}}|x|^{3}$.
Problem 3. Given $f \in L_{1}(\mathbb{R})$ and $a \in \mathbb{R}$. Show that the function $u(t, x)=f(x-a t)$ is a distributional solution to the PDE $u_{t}+a u_{x}=0$, that is

$$
u_{t}(\varphi)+a u_{x}(\varphi)=0 \quad \text { for all } \varphi \in \mathscr{D}\left(\mathbb{R}^{2}\right)
$$

