SOMMERSEMESTER 2016-HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#3 Solutions

Problem 1. Let $x \in \mathbb{R}^{d}$ be a column vector and let I be the $d \times d$ identity matrix. Prove that $\operatorname{det}\left(I+x x^{T}\right)=1+|x|^{2}$.

Proof. Note that x is an eigenvector of the matrix $I+x x^{T}$ with corresponding eigenvalue $1+|x|^{2}$:

$$
\left(I+x x^{T}\right) x=x+x\left(x^{T} x\right)=\left(1+|x|^{2}\right) x
$$

Any vector $y \in \mathbb{R}^{d}$ perpendicular to x, that is $x^{T} y=0$ is also an eigenvector with eigenvalue one:

$$
\left(I+x x^{T}\right) y=y
$$

The eigenspace corresponding to this eigenvalue is $d-1$ dimensional. Recall that the determinant of a square matrix is equal to the product of its eigenvalues, counting multiplicities. Thus

$$
\operatorname{det}\left(I+x x^{T}\right)=1+|x|^{2}
$$

Problem 2. Compute the distributional derivative $\frac{d^{4}}{d x^{4}}|x|^{3}$.
Solution. By the definition of the distributional derivative

$$
\frac{d^{4}}{d x^{4}}|x|^{3}(\varphi)=|x|^{3}\left(\frac{d^{4} \varphi}{\partial x^{4}}\right) .
$$

The expression on the right-hand side can be expanded. This leads to

$$
\begin{aligned}
|x|^{3}\left(\frac{d^{4} \varphi}{\partial x^{4}}\right) & =\int_{0}^{\infty} x^{3} \frac{d^{4} \varphi}{\partial x^{4}}(x) d x-\int_{-\infty}^{0} x^{3} \frac{d^{4} \varphi}{\partial x^{4}} d x=-\int_{0}^{\infty} 3 x^{2} \frac{d^{3} \varphi}{\partial x^{3}} d x+\int_{-\infty}^{0} 3 x^{2} \frac{d^{3} \varphi}{\partial x^{3}} \\
& =\int_{0}^{\infty} 6 x \frac{d^{2} \varphi}{\partial x^{2}} d x-\int_{-\infty}^{0} 6 x \frac{d^{2} \varphi}{\partial x^{2}} d x=-6 \int_{0}^{\infty} \frac{d \varphi}{\partial x} d x+6 \int_{-\infty}^{0} \frac{d \varphi}{\partial x} d x=12 \varphi(0)
\end{aligned}
$$

Hence we have established the formula

$$
\frac{d^{4}}{d x^{4}}|x|^{3}=12 \delta_{0}
$$

in the sense of distributions.
Problem 3. Given $f \in L_{1}(\mathbb{R})$ and $a \in \mathbb{R}$. Show that the function $u(t, x)=f(x-a t)$ is a distributional solution to the PDE $u_{t}+a u_{x}=0$, that is

$$
u_{t}(\varphi)+a u_{x}(\varphi)=0 \quad \text { for all } \varphi \in \mathscr{D}\left(\mathbb{R}^{2}\right)
$$

Solution. Note that $u(t, x)$ defines a distribution since for $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ since using the substitution $y=x-a t$ and Fubini's Theorem one has

$$
\begin{aligned}
& u(\varphi)=\int_{\mathbb{R}^{2}} u(t, x) \varphi(t, x) d x d t \\
&=\int_{\mathbb{R}^{2}} f(y) \varphi(t, y+a t) d y d t=\int_{-\infty}^{\infty} f(y)\left\{\int_{-\infty}^{\infty} \varphi(t, y+a t) d t\right\} d y
\end{aligned}
$$

Note that the last integral is finite since $\varphi \in \mathscr{D}\left(\mathbb{R}^{2}\right)$ and $f \in L_{1}(\mathbb{R})$. By the transformation formula for multiple integrals we conclude that $u \varphi \in L_{1}\left(\mathbb{R}^{2}\right)$. However, it may be worth noting that u is usually not in $L_{1}\left(\mathbb{R}^{2}\right)$. For example, choose $f=\chi_{(0,1)} \in L_{1}(\mathbb{R})$ and observe that

$$
\int_{\mathbb{R}^{2}} \chi_{(0,1)}(x-a t) d x d t=\int_{\mathbb{R}}\left\{\int_{a t}^{a t+1} d x\right\} d t=\int_{\mathbb{R}} d t=\infty
$$

Compute now, using the definition of the distributional derivative and the substitution $y=x-a t, s=t$

$$
\begin{aligned}
u_{t}(\varphi)+a u_{x}(\varphi) & =-\int_{\mathbb{R}^{2}} u(t, x)\left[\varphi_{t}(t, x)+a \varphi_{x}(t, x)\right] d x d t \\
& =-\int_{\mathbb{R}^{2}} f(y)\left[\varphi_{t}(s, y+a s)+a \varphi_{x}(s, y+a s)\right] d y d s \\
& =-\int_{\mathbb{R}^{2}} f(y) \frac{d}{d s} \varphi(s, y+a s) d y d s=-\int_{\mathbb{R}} f(y)\left(\int_{\mathbb{R}} \frac{d}{d s} \varphi(s, y+a s) d s\right) d y=0,
\end{aligned}
$$

since the function φ has compact support. Just in case: The partial derivatives of φ in the second integral are

$$
\varphi_{t}(s, y+a s)=\left.\frac{\partial \varphi}{\partial t}\right|_{t=s, x=y+a s}
$$

and

$$
\varphi_{x}(s, y+a s)=\left.\frac{\partial \varphi}{\partial x}\right|_{t=s, x=y+a s} .
$$

