SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #4 due 5/17

Problem 1. Suppose that $\Omega \subset \mathbb{R}^d$ is of class C^1 . Fix $\underline{x} \in \partial \Omega$. Then there exists a neighborhood $\mathscr{U}(\underline{x})$ and a function $g \in C^1$ such that $\partial \Omega \cap \mathscr{U}(\underline{x}) = \{x \in \mathscr{U}(\underline{x}) : x_d = g(x')\}$ and $\Omega \cap \mathscr{U}(\underline{x}) = \{x \in \mathscr{U}(\underline{x}) : x_d > g(x')\}$. Let χ_Ω be the characteristic function of Ω . Prove that

$$\partial_j \chi_\Omega = -\nu_j \, dS \qquad \text{for all } x \in \mathscr{U}(\underline{x})$$

(and hence for all $x \in \mathbb{R}^d$). Here ν denotes the the exterior unit normal vector field along $\partial\Omega$ and dS denotes the surface measure on $\partial\Omega$. Hint: In $\mathscr{U}(\underline{x})$ we have

$$\chi_{\Omega}(x) = \lim_{\varepsilon \to 0} h\left(\frac{x_d - g(x')}{\varepsilon}\right) \quad \text{as } \varepsilon \to 0$$

pointwise and in the sense of distributions, where $h \in C^{\infty}(\mathbb{R}, [0, 1])$ satisfies h(t) = 1 for all $t \in (1, \infty)$ and h(t) = 0 for all $t \in (-\infty, 0)$.

Problem 2. Use the result of problem above to give a proof of Theorem 3.3. (Gauss's Theorem).

Problem 3. a.) Given is a compact set $K \subset U$ where U is an open set in \mathbb{R}^d . Use Theorem 3.9 to establish the existence of a function $\eta \in C_0^{\infty}(U)$ which satisfies $\eta(x) = 1$ for all $x \in K$.

b.) Use part a.) to establish the existence of a partition of unity $\{\eta_j\}_{j=1}^m$ subordinate to the finite open cover $\{U_j\}_{j=1}^m$ of $\overline{\Omega} \subset \mathbb{R}^d$, that is, a family of functions $\eta_j \in C_0^{\infty}(\mathbb{R}^d)$ with $\operatorname{supp} \eta_j \subset U_j, \ 0 \leq \eta_j \leq 1$ for j = 1, 2, ..., m, and $\sum_{j=1}^m \eta_j = 1$ for all $x \in \Omega$. You may assume that Ω is a bounded set.