SOMMERSEMESTER 2016 - HOHERE ANALYSIS II
LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #4 Solutions

Problem 1. Suppose that © C R? is of class C'. Fix 2 € 0f2. Then there exists a
neighborhood % (z) and a function g € C' such that

WNU(z)={zeWU(x) : rg=9g(x")} and QN%U(zx)={reU(x) : x4>g(z)}.
Let xq be the characteristic function of €2. Prove that
dixa = —v;dS for all z € % (z)

(and hence for all x € R?). Here v denotes the the exterior unit normal vector field along
02 and dS denotes the surface measure on 0. Hint: In % (z) we have

Xg(x):limh(xd_—g(x)) ase — 0,

e—0 £

pointwise and in the sense of distributions, where h € C*(R, [0, 1]) satisfies h(t) = 1 for
all t € (1,00) and h(t) = 0 for all t € (—o0,0).

Proof. Recall that
(Vg(z'), -1)
1+ |Vg(a)P

v(z') =
Compute, using the chain rule

o (B2 (5= SOV gy g,

£ £ 9

The distributional derivative of xq can be computed as follows. Choose ¢ € C§* (% (x)).
Then, relying on Proposition 3.7 and using the change of variables s = (x4 — g(2'))/e, one
obtains

. xq— g(2')\ vi(x')\/1+ |Vg(x')|?
1 _ /
=—lim - {/ ' (sz—g(x)) (', xq da:d} N1+ |Vg(a)]?da!
e—0 Rd-1 € R g
1
= —lim {/ h'(s)p(a' es+ g(x') ds} vi(z')\/1 4 |Vg(a)|? dz’'
e—0 Rd—1 0
= —lim go(:c e+g(x ")/ 1+ |Vg(2')|? da’
e—0 _
ood
+ lim o {/0 h(s)Ego(x’,ss + g(w’))ds} dx’

== /Rd1 o', g(2")v;(a") /1 + |Vg(a)]?da' = — /(99 o(z)v;(x)dS(z)
1
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This shows that
dixa = —v;dS in 9'(% (z)) .
Of course, since the choice of x was arbitrary, one obtains
Jdixa = —v;dS in 7'(X)

where X C R? is open and X N 9 is the graph of a C'-function. Using a partition of
unity, one obtains
dixa = —v;dS in Z'(RY).
O

Problem 2. Use the result of problem above to give a proof of Theorem 3.3. (Gauss’s
Theorem).

Proof. Let f € C*(R?). Then using the solution to the problem above

[ ostas = [ ooy s@)de = =ox(5) = S = [ F@hta)asa) .

Technically, a distribution is a linear functional on a function in Z(R). However, the dis-
tributions x and d.S are of order zero and can view as linear functionals on the continuous
functions. OJ

Problem 3. a.) Given is a compact set K C U where U is an open set in R?. Use
Theorem 3.9 to establish the existence of a function n € C5°(U) which satisfies n(x) = 1
for all z € K.

b.) Use part a.) to establish the existence of a partition of unity {»;}7L, subordinate to
the finite open cover {U;}™, of Q C RY, that is, a family of functions 7; € C5°(R?) with
suppn; C Uj, 0 <m; < 1for j =1,2,..,m, and > 70 m; = 1 for all z € Q. You may
assume that €2 is an open and bounded set and that each U; is bounded, j = 1,2, ..., m.

Solution. a.) There exists ¢ > 0 such that K3 C U where K¢ = {z € R? : dist(0K, ) <
e}. Now set n = 1. * xg= where 1) is the family of Friedrichs mollifiers defined in the

lecture and y 4 is the characteristic function of A C R Note that for z € R?\ K% we
have

n(x) = g Ve(y — 2)xx(y) dy = . Ye(y —2)dy =0

since 1.(z) = 0 for |z| > e. This proves n € C§°(U). Furthermore, for z € K we have

@)= [ vely—2)xr-(y)dy = [ Yely—2)dy= [ (y—2x)dy=1,
Rd Ke Rd

since for y ¢ K and we have ¢.(y — z) = 0.

b.) At first one constructs a new open cover V; of Q with the property that Vj c U;.
This is done as follows. Set

r=0\{JUu,ct.
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Note that F} is a compact set. Hence, there exists an open set V; D F} such that V; C Uj.
Similarly one finds the open sets Vs, ..., V,,. Set

k—1 m
F=0\|Jvu | Ul cls, fork=2..m.
J=1 j=k+1

and choose open sets V; C U; such that Vj CUj and F; C Vj for j = 2,...,m. Note that
the definition of F} requires only the knowledge of Vi, .., Vi_;.

According to part a.) there exist functions ¢; such that ¢ € C5°(U;), 0 < ¢; < 1 for
j=1,2,..,m, and ¢(x) = 1 for all x € V. Since Q C Ui~ Vi, there exists an open set
V' D Q such that V C [J;, Vi. Using part a.) there exists a function ¢ € C5°(Ur-, Vi)
with 0 < ¢ < 1 and ¢(x) = 1 for all x € V. Finally, the functions ¢; and ¢ can be
considered as functions in Cg°(RY).

Set now
@) for xeU;,
nix) =< (1—o(@)+ Y dulx) for j=1,2,...m .
0 for ¢ U,

m
and observe that n; € C5°(RY), 0 < n; <1 for j = 1,2,..,m, and that an(x) =1 for
j=1
all x € Q. The introduction of the function ¢ ensures that no division by zero occurs in
this definition.
Note that this construction works - mutatis mutandis - in the situation where each Uj
is a bounded, open subset of €2 such that U; C (2, every compact subset of €2 intersects

only finitely many U; and
Q - U Uj .
j=1

For details we refer to the book by Renardy and Rogers [1, Theorem 5.6]. This has been
used in the proof of Theorem 3.13.
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