
SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II
LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #4 Solutions

Problem 1. Suppose that Ω ⊂ Rd is of class C1. Fix x ∈ ∂Ω. Then there exists a
neighborhood U (x) and a function g ∈ C1 such that

∂Ω∩U (x) = {x ∈ U (x) : xd = g(x′)} and Ω∩U (x) = {x ∈ U (x) : xd > g(x′)} .
Let χΩ be the characteristic function of Ω. Prove that

∂jχΩ = −νj dS for all x ∈ U (x)

(and hence for all x ∈ Rd). Here ν denotes the the exterior unit normal vector field along
∂Ω and dS denotes the surface measure on ∂Ω. Hint: In U (x) we have

χΩ(x) = lim
ε→0

h

(
xd − g(x′)

ε

)
as ε→ 0 ,

pointwise and in the sense of distributions, where h ∈ C∞(R, [0, 1]) satisfies h(t) = 1 for
all t ∈ (1,∞) and h(t) = 0 for all t ∈ (−∞, 0).

Proof. Recall that

ν(x′) =
(∇g(x′),−1)√
1 + |∇g(x′)|2

.

Compute, using the chain rule

∂jh

(
xd − g(x′)

ε

)
= h′

(
xd − g(x′)

ε

)
νj(x

′)
√

1 + |∇g(x′)|2
ε

, for j = 1, ..., d .

The distributional derivative of χΩ can be computed as follows. Choose ϕ ∈ C∞0 (U (x)).
Then, relying on Proposition 3.7 and using the change of variables s = (xd−g(x′))/ε, one
obtains

∂jχ(ϕ) =− lim
ε→0

∫
Rd

h′
(
xd − g(x′)

ε

)
νj(x

′)
√

1 + |∇g(x′)|2
ε

ϕ(x) dx

=− lim
ε→0

∫
Rd−1

1

ε

{∫
R
h′
(
xd − g(x′)

ε

)
ϕ(x′, xd)dxd

}
νj(x

′)
√

1 + |∇g(x′)|2 dx′

=− lim
ε→0

∫
Rd−1

{∫ 1

0

h′(s)ϕ(x′, εs+ g(x′))ds

}
νj(x

′)
√

1 + |∇g(x′)|2 dx′

=− lim
ε→0

∫
Rd−1

ϕ(x′, ε+ g(x′))νj(x
′)
√

1 + |∇g(x′)|2 dx′

+ lim
ε→0

∫
Rd−1

{∫ 1

0

h(s)
d

ds
ϕ(x′, εs+ g(x′))ds

}
dx′

=−
∫
Rd−1

ϕ(x′, g(x′))νj(x
′)
√

1 + |∇g(x′)|2 dx′ = −
∫
∂Ω

ϕ(x)νj(x)dS(x)
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This shows that

∂jχΩ = −νjdS in D ′(U (x)) .

Of course, since the choice of x was arbitrary, one obtains

∂jχΩ = −νjdS in D ′(X)

where X ⊂ Rd is open and X ∩ ∂Ω is the graph of a C1-function. Using a partition of
unity, one obtains

∂jχΩ = −νjdS in D ′(Rd) .

�

Problem 2. Use the result of problem above to give a proof of Theorem 3.3. (Gauss’s
Theorem).

Proof. Let f ∈ C1(Rd). Then using the solution to the problem above∫
Ω

∂jfdx =

∫
Rd

χΩ(x)∂jf(x) dx = −∂jχ(f) = (νjdS)(f) =

∫
∂Ω

f(x)νj(x) dS(x) .

Technically, a distribution is a linear functional on a function in D(R). However, the dis-
tributions χ and dS are of order zero and can view as linear functionals on the continuous
functions. �

Problem 3. a.) Given is a compact set K ⊂ U where U is an open set in Rd. Use
Theorem 3.9 to establish the existence of a function η ∈ C∞0 (U) which satisfies η(x) = 1
for all x ∈ K.

b.) Use part a.) to establish the existence of a partition of unity {ηj}mj=1 subordinate to

the finite open cover {Uj}mj=1 of Ω ⊂ Rd, that is, a family of functions ηj ∈ C∞0 (Rd) with
supp ηj ⊂ Uj, 0 ≤ ηj ≤ 1 for j = 1, 2, ...,m, and

∑m
j=1 ηj = 1 for all x ∈ Ω. You may

assume that Ω is an open and bounded set and that each Uj is bounded, j = 1, 2, ...,m.

Solution. a.) There exists ε > 0 such that K3ε ⊂ U where Kε = {x ∈ Rd : dist(∂K, x) ≤
ε}. Now set η = ψε ∗ χKε where ψε is the family of Friedrichs mollifiers defined in the
lecture and χA is the characteristic function of A ⊂ Rd. Note that for x ∈ Rd \K2ε we
have

η(x) =

∫
Rd

ψε(y − x)χKε(y) dy =

∫
Kε

ψε(y − x) dy = 0

since ψε(z) = 0 for |z| ≥ ε. This proves η ∈ C∞0 (U). Furthermore, for x ∈ K we have

η(x) =

∫
Rd

ψε(y − x)χKε(y) dy =

∫
Kε

ψε(y − x) dy =

∫
Rd

ψε(y − x)dy = 1 ,

since for y /∈ Kε and we have ψε(y − x) = 0.

b.) At first one constructs a new open cover Vj of Ω with the property that V j ⊂ Uj.
This is done as follows. Set

F1 = Ω \
m⋃
j=2

Uj ⊂ U1 .



Note that F1 is a compact set. Hence, there exists an open set V1 ⊃ F1 such that V 1 ⊂ U1.
Similarly one finds the open sets V2, ..., Vm. Set

Fk = Ω \

[
k−1⋃
j=1

Vj ∪
m⋃

j=k+1

Uj

]
⊂ Uk , for k = 2, ...,m .

and choose open sets Vj ⊂ Uj such that V j ⊂ Uj and Fj ⊂ Vj for j = 2, ...,m. Note that
the definition of Fk requires only the knowledge of V1, .., Vk−1.

According to part a.) there exist functions φj such that φ ∈ C∞0 (Uj), 0 ≤ φj ≤ 1 for
j = 1, 2, ..,m, and φ(x) = 1 for all x ∈ V j. Since Ω ⊂

⋃m
k=1 Vk, there exists an open set

V ⊃ Ω such that V ⊂
⋃m

k=1 Vk. Using part a.) there exists a function φ ∈ C∞0 (
⋃m

k=1 Vk)
with 0 ≤ φ ≤ 1 and φ(x) = 1 for all x ∈ V . Finally, the functions φj and φ can be
considered as functions in C∞0 (Rd).

Set now

ηj(x) =


φj(x)

(1− φ(x)) +
m∑
k=1

φk(x)

for x ∈ Uj ,

0 for x /∈ Uj ,

for j = 1, 2, ...,m .

and observe that ηj ∈ C∞0 (Rd), 0 ≤ ηj ≤ 1 for j = 1, 2, ..,m, and that
m∑
j=1

ηj(x) = 1 for

all x ∈ Ω. The introduction of the function φ ensures that no division by zero occurs in
this definition.

Note that this construction works - mutatis mutandis - in the situation where each Uj

is a bounded, open subset of Ω such that U j ⊂ Ω, every compact subset of Ω intersects
only finitely many Uj and

Ω =
∞⋃
j=1

Uj .

For details we refer to the book by Renardy and Rogers [1, Theorem 5.6]. This has been
used in the proof of Theorem 3.13.
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