SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#4 Solutions

Problem 1. Suppose that $\Omega \subset \mathbb{R}^{d}$ is of class C^{1}. Fix $\underline{x} \in \partial \Omega$. Then there exists a neighborhood $\mathscr{U}(\underline{x})$ and a function $g \in C^{1}$ such that
$\partial \Omega \cap \mathscr{U}(\underline{x})=\left\{x \in \mathscr{U}(\underline{x}): x_{d}=g\left(x^{\prime}\right)\right\} \quad$ and $\quad \Omega \cap \mathscr{U}(\underline{x})=\left\{x \in \mathscr{U}(\underline{x}): x_{d}>g\left(x^{\prime}\right)\right\}$.
Let χ_{Ω} be the characteristic function of Ω. Prove that

$$
\partial_{j} \chi_{\Omega}=-\nu_{j} d S \quad \text { for all } x \in \mathscr{U}(\underline{x})
$$

(and hence for all $x \in \mathbb{R}^{d}$). Here ν denotes the the exterior unit normal vector field along $\partial \Omega$ and $d S$ denotes the surface measure on $\partial \Omega$. Hint: In $\mathscr{U}(\underline{x})$ we have

$$
\chi_{\Omega}(x)=\lim _{\varepsilon \rightarrow 0} h\left(\frac{x_{d}-g\left(x^{\prime}\right)}{\varepsilon}\right) \quad \text { as } \varepsilon \rightarrow 0
$$

pointwise and in the sense of distributions, where $h \in C^{\infty}(\mathbb{R},[0,1])$ satisfies $h(t)=1$ for all $t \in(1, \infty)$ and $h(t)=0$ for all $t \in(-\infty, 0)$.
Proof. Recall that

$$
\nu\left(x^{\prime}\right)=\frac{\left(\nabla g\left(x^{\prime}\right),-1\right)}{\sqrt{1+\left|\nabla g\left(x^{\prime}\right)\right|^{2}}} .
$$

Compute, using the chain rule

$$
\partial_{j} h\left(\frac{x_{d}-g\left(x^{\prime}\right)}{\varepsilon}\right)=h^{\prime}\left(\frac{x_{d}-g\left(x^{\prime}\right)}{\varepsilon}\right) \frac{\nu_{j}\left(x^{\prime}\right) \sqrt{1+\left|\nabla g\left(x^{\prime}\right)\right|^{2}}}{\varepsilon}, \quad \text { for } j=1, \ldots, d
$$

The distributional derivative of χ_{Ω} can be computed as follows. Choose $\varphi \in C_{0}^{\infty}(\mathscr{U}(\underline{x}))$. Then, relying on Proposition 3.7 and using the change of variables $s=\left(x_{d}-g\left(x^{\prime}\right)\right) / \varepsilon$, one obtains

$$
\begin{aligned}
& \partial_{j} \chi(\varphi)=-\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{d}} h^{\prime}\left(\frac{x_{d}-g\left(x^{\prime}\right)}{\varepsilon}\right) \frac{\nu_{j}\left(x^{\prime}\right) \sqrt{1+\left|\nabla g\left(x^{\prime}\right)\right|^{2}}}{\varepsilon} \varphi(x) d x \\
&=-\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{d-1}} \frac{1}{\varepsilon}\left\{\int_{\mathbb{R}} h^{\prime}\left(\frac{x_{d}-g\left(x^{\prime}\right)}{\varepsilon}\right) \varphi\left(x^{\prime}, x_{d}\right) d x_{d}\right\} \nu_{j}\left(x^{\prime}\right) \sqrt{1+\left|\nabla g\left(x^{\prime}\right)\right|^{2}} d x^{\prime} \\
&=-\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{d-1}}\left\{\int_{0}^{1} h^{\prime}(s) \varphi\left(x^{\prime}, \varepsilon s+g\left(x^{\prime}\right)\right) d s\right\} \nu_{j}\left(x^{\prime}\right) \sqrt{1+\left|\nabla g\left(x^{\prime}\right)\right|^{2}} d x^{\prime} \\
&=-\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{d-1}} \varphi\left(x^{\prime}, \varepsilon+g\left(x^{\prime}\right)\right) \nu_{j}\left(x^{\prime}\right) \sqrt{1+\left|\nabla g\left(x^{\prime}\right)\right|^{2}} d x^{\prime} \\
&+\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{d-1}}\left\{\int_{0}^{1} h(s) \frac{d}{d s} \varphi\left(x^{\prime}, \varepsilon s+g\left(x^{\prime}\right)\right) d s\right\} d x^{\prime} \\
&=-\int_{\mathbb{R}^{d-1}} \varphi\left(x^{\prime}, g\left(x^{\prime}\right)\right) \nu_{j}\left(x^{\prime}\right) \sqrt{1+\left|\nabla g\left(x^{\prime}\right)\right|^{2}} d x^{\prime}=-\int_{\partial \Omega} \varphi(x) \nu_{j}(x) d S(x) \\
& 1
\end{aligned}
$$

This shows that

$$
\partial_{j} \chi_{\Omega}=-\nu_{j} d S \quad \text { in } \mathscr{D}^{\prime}(\mathscr{U}(\underline{x})) .
$$

Of course, since the choice of \underline{x} was arbitrary, one obtains

$$
\partial_{j} \chi_{\Omega}=-\nu_{j} d S \quad \text { in } \mathscr{D}^{\prime}(X)
$$

where $X \subset \mathbb{R}^{d}$ is open and $X \cap \partial \Omega$ is the graph of a C^{1}-function. Using a partition of unity, one obtains

$$
\partial_{j} \chi_{\Omega}=-\nu_{j} d S \quad \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right) .
$$

Problem 2. Use the result of problem above to give a proof of Theorem 3.3. (Gauss's Theorem).

Proof. Let $f \in C^{1}\left(\mathbb{R}^{d}\right)$. Then using the solution to the problem above

$$
\int_{\Omega} \partial_{j} f d x=\int_{\mathbb{R}^{d}} \chi_{\Omega}(x) \partial_{j} f(x) d x=-\partial_{j} \chi(f)=\left(\nu_{j} d S\right)(f)=\int_{\partial \Omega} f(x) \nu_{j}(x) d S(x)
$$

Technically, a distribution is a linear functional on a function in $\mathscr{D}(\mathbb{R})$. However, the distributions χ and $d S$ are of order zero and can view as linear functionals on the continuous functions.

Problem 3. a.) Given is a compact set $K \subset U$ where U is an open set in \mathbb{R}^{d}. Use Theorem 3.9 to establish the existence of a function $\eta \in C_{0}^{\infty}(U)$ which satisfies $\eta(x)=1$ for all $x \in K$.
b.) Use part a.) to establish the existence of a partition of unity $\left\{\eta_{j}\right\}_{j=1}^{m}$ subordinate to the finite open cover $\left\{U_{j}\right\}_{j=1}^{m}$ of $\bar{\Omega} \subset \mathbb{R}^{d}$, that is, a family of functions $\eta_{j} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ with $\operatorname{supp} \eta_{j} \subset U_{j}, 0 \leq \eta_{j} \leq 1$ for $j=1,2, \ldots, m$, and $\sum_{j=1}^{m} \eta_{j}=1$ for all $x \in \Omega$. You may assume that Ω is an open and bounded set and that each U_{j} is bounded, $j=1,2, \ldots, m$.
Solution. a.) There exists $\varepsilon>0$ such that $K^{3 \varepsilon} \subset U$ where $K^{\varepsilon}=\left\{x \in \mathbb{R}^{d}: \operatorname{dist}(\partial K, x) \leq\right.$ $\varepsilon\}$. Now set $\eta=\psi_{\varepsilon} * \chi_{K^{\varepsilon}}$ where ψ_{ε} is the family of Friedrichs mollifiers defined in the lecture and χ_{A} is the characteristic function of $A \subset \mathbb{R}^{d}$. Note that for $x \in \mathbb{R}^{d} \backslash K^{2 \varepsilon}$ we have

$$
\eta(x)=\int_{\mathbb{R}^{d}} \psi_{\varepsilon}(y-x) \chi_{K^{\varepsilon}}(y) d y=\int_{K^{\varepsilon}} \psi_{\varepsilon}(y-x) d y=0
$$

since $\psi_{\varepsilon}(z)=0$ for $|z| \geq \varepsilon$. This proves $\eta \in C_{0}^{\infty}(U)$. Furthermore, for $x \in K$ we have

$$
\eta(x)=\int_{\mathbb{R}^{d}} \psi_{\varepsilon}(y-x) \chi_{K^{\varepsilon}}(y) d y=\int_{K^{\varepsilon}} \psi_{\varepsilon}(y-x) d y=\int_{\mathbb{R}^{d}} \psi_{\varepsilon}(y-x) d y=1
$$

since for $y \notin K^{\varepsilon}$ and we have $\psi_{\varepsilon}(y-x)=0$.
b.) At first one constructs a new open cover V_{j} of $\bar{\Omega}$ with the property that $\bar{V}_{j} \subset U_{j}$. This is done as follows. Set

$$
F_{1}=\bar{\Omega} \backslash \bigcup_{j=2}^{m} U_{j} \subset U_{1}
$$

Note that F_{1} is a compact set. Hence, there exists an open set $V_{1} \supset F_{1}$ such that $\bar{V}_{1} \subset U_{1}$. Similarly one finds the open sets V_{2}, \ldots, V_{m}. Set

$$
F_{k}=\bar{\Omega} \backslash\left[\bigcup_{j=1}^{k-1} V_{j} \cup \bigcup_{j=k+1}^{m} U_{j}\right] \subset U_{k}, \quad \text { for } k=2, \ldots, m
$$

and choose open sets $V_{j} \subset U_{j}$ such that $\bar{V}_{j} \subset U_{j}$ and $F_{j} \subset V_{j}$ for $j=2, \ldots, m$. Note that the definition of F_{k} requires only the knowledge of $V_{1}, . ., V_{k-1}$.

According to part a.) there exist functions ϕ_{j} such that $\phi \in C_{0}^{\infty}\left(U_{j}\right), 0 \leq \phi_{j} \leq 1$ for $j=1,2, \ldots, m$, and $\phi(x)=1$ for all $x \in \bar{V}_{j}$. Since $\bar{\Omega} \subset \bigcup_{k=1}^{m} V_{k}$, there exists an open set $V \supset \bar{\Omega}$ such that $V \subset \bigcup_{k=1}^{m} V_{k}$. Using part a.) there exists a function $\phi \in C_{0}^{\infty}\left(\bigcup_{k=1}^{m} V_{k}\right)$ with $0 \leq \phi \leq 1$ and $\phi(x)=1$ for all $x \in V$. Finally, the functions ϕ_{j} and ϕ can be considered as functions in $C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$.

Set now

$$
\eta_{j}(x)=\left\{\begin{array}{cc}
\frac{\phi_{j}(x)}{\frac{1-\phi(x))+\sum_{k=1}^{m} \phi_{k}(x)}{(1-1}} & \text { for } \quad x \in U_{j}, \\
0 & \text { for } \quad x \notin U_{j},
\end{array} \quad \text { for } j=1,2, \ldots, m\right.
$$

and observe that $\eta_{j} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right), 0 \leq \eta_{j} \leq 1$ for $j=1,2, . ., m$, and that $\sum_{j=1}^{m} \eta_{j}(x)=1$ for all $x \in \Omega$. The introduction of the function ϕ ensures that no division by zero occurs in this definition.

Note that this construction works - mutatis mutandis - in the situation where each U_{j} is a bounded, open subset of Ω such that $\bar{U}_{j} \subset \Omega$, every compact subset of Ω intersects only finitely many U_{j} and

$$
\Omega=\bigcup_{j=1}^{\infty} U_{j}
$$

For details we refer to the book by Renardy and Rogers [1, Theorem 5.6]. This has been used in the proof of Theorem 3.13.

References

[1] Michael Renardy and Robert C. Rogers. An introduction to partial differential equations, volume 13 of Texts in Applied Mathematics. Springer-Verlag, New York, 1993.

