SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #4 Solutions

Problem 1. Suppose that $\Omega \subset \mathbb{R}^d$ is of class C^1 . Fix $\underline{x} \in \partial \Omega$. Then there exists a neighborhood $\mathscr{U}(\underline{x})$ and a function $g \in C^1$ such that

 $\partial \Omega \cap \mathscr{U}(\underline{x}) = \{ x \in \mathscr{U}(\underline{x}) : x_d = g(x') \} \quad \text{and} \quad \Omega \cap \mathscr{U}(\underline{x}) = \{ x \in \mathscr{U}(\underline{x}) : x_d > g(x') \}.$

Let χ_{Ω} be the characteristic function of Ω . Prove that

$$\partial_j \chi_\Omega = -\nu_j \, dS \qquad \text{for all } x \in \mathscr{U}(\underline{x})$$

(and hence for all $x \in \mathbb{R}^d$). Here ν denotes the the exterior unit normal vector field along $\partial\Omega$ and dS denotes the surface measure on $\partial\Omega$. Hint: In $\mathscr{U}(\underline{x})$ we have

$$\chi_{\Omega}(x) = \lim_{\varepsilon \to 0} h\left(\frac{x_d - g(x')}{\varepsilon}\right) \quad \text{as } \varepsilon \to 0$$

pointwise and in the sense of distributions, where $h \in C^{\infty}(\mathbb{R}, [0, 1])$ satisfies h(t) = 1 for all $t \in (1, \infty)$ and h(t) = 0 for all $t \in (-\infty, 0)$.

Proof. Recall that

$$\nu(x') = \frac{(\nabla g(x'), -1)}{\sqrt{1 + |\nabla g(x')|^2}}$$

Compute, using the chain rule

$$\partial_j h\left(\frac{x_d - g(x')}{\varepsilon}\right) = h'\left(\frac{x_d - g(x')}{\varepsilon}\right) \frac{\nu_j(x')\sqrt{1 + |\nabla g(x')|^2}}{\varepsilon} , \quad \text{for } j = 1, ..., d .$$

The distributional derivative of χ_{Ω} can be computed as follows. Choose $\varphi \in C_0^{\infty}(\mathscr{U}(\underline{x}))$. Then, relying on Proposition 3.7 and using the change of variables $s = (x_d - g(x'))/\varepsilon$, one obtains

$$\begin{split} \partial_{j}\chi(\varphi) &= -\lim_{\varepsilon \to 0} \int_{\mathbb{R}^{d}} h'\left(\frac{x_{d} - g(x')}{\varepsilon}\right) \frac{\nu_{j}(x')\sqrt{1 + |\nabla g(x')|^{2}}}{\varepsilon} \varphi(x) \, dx \\ &= -\lim_{\varepsilon \to 0} \int_{\mathbb{R}^{d-1}} \frac{1}{\varepsilon} \left\{ \int_{\mathbb{R}} h'\left(\frac{x_{d} - g(x')}{\varepsilon}\right) \varphi(x', x_{d}) dx_{d} \right\} \nu_{j}(x')\sqrt{1 + |\nabla g(x')|^{2}} \, dx' \\ &= -\lim_{\varepsilon \to 0} \int_{\mathbb{R}^{d-1}} \left\{ \int_{0}^{1} h'(s)\varphi(x', \varepsilon s + g(x')) ds \right\} \nu_{j}(x')\sqrt{1 + |\nabla g(x')|^{2}} \, dx' \\ &= -\lim_{\varepsilon \to 0} \int_{\mathbb{R}^{d-1}} \varphi(x', \varepsilon + g(x'))\nu_{j}(x')\sqrt{1 + |\nabla g(x')|^{2}} \, dx' \\ &+ \lim_{\varepsilon \to 0} \int_{\mathbb{R}^{d-1}} \left\{ \int_{0}^{1} h(s)\frac{d}{ds}\varphi(x', \varepsilon s + g(x')) ds \right\} dx' \\ &= -\int_{\mathbb{R}^{d-1}} \varphi(x', g(x'))\nu_{j}(x')\sqrt{1 + |\nabla g(x')|^{2}} \, dx' = -\int_{\partial\Omega} \varphi(x)\nu_{j}(x)dS(x) \\ &= 1 \end{split}$$

This shows that

$$\partial_j \chi_{\Omega} = -\nu_j dS$$
 in $\mathscr{D}'(\mathscr{U}(\underline{x}))$.

Of course, since the choice of \underline{x} was arbitrary, one obtains

$$\partial_j \chi_\Omega = -\nu_j dS \quad \text{in } \mathscr{D}'(X)$$

where $X \subset \mathbb{R}^d$ is open and $X \cap \partial \Omega$ is the graph of a C^1 -function. Using a partition of unity, one obtains

$$\partial_j \chi_\Omega = -\nu_j dS \quad \text{in } \mathscr{D}'(\mathbb{R}^d) .$$

Problem 2. Use the result of problem above to give a proof of Theorem 3.3. (Gauss's Theorem).

Proof. Let $f \in C^1(\mathbb{R}^d)$. Then using the solution to the problem above

$$\int_{\Omega} \partial_j f dx = \int_{\mathbb{R}^d} \chi_{\Omega}(x) \partial_j f(x) \, dx = -\partial_j \chi(f) = (\nu_j dS)(f) = \int_{\partial \Omega} f(x) \nu_j(x) \, dS(x) \; .$$

Technically, a distribution is a linear functional on a function in $\mathscr{D}(\mathbb{R})$. However, the distributions χ and dS are of order zero and can view as linear functionals on the continuous functions.

Problem 3. a.) Given is a compact set $K \subset U$ where U is an open set in \mathbb{R}^d . Use Theorem 3.9 to establish the existence of a function $\eta \in C_0^{\infty}(U)$ which satisfies $\eta(x) = 1$ for all $x \in K$.

b.) Use part a.) to establish the existence of a partition of unity $\{\eta_j\}_{j=1}^m$ subordinate to the finite open cover $\{U_j\}_{j=1}^m$ of $\overline{\Omega} \subset \mathbb{R}^d$, that is, a family of functions $\eta_j \in C_0^{\infty}(\mathbb{R}^d)$ with $\operatorname{supp} \eta_j \subset U_j, \ 0 \leq \eta_j \leq 1$ for j = 1, 2, ..., m, and $\sum_{j=1}^m \eta_j = 1$ for all $x \in \Omega$. You may assume that Ω is an open and bounded set and that each U_j is bounded, j = 1, 2, ..., m.

Solution. a.) There exists $\varepsilon > 0$ such that $K^{3\varepsilon} \subset U$ where $K^{\varepsilon} = \{x \in \mathbb{R}^d : \operatorname{dist}(\partial K, x) \leq \varepsilon\}$. Now set $\eta = \psi_{\varepsilon} * \chi_{K^{\varepsilon}}$ where ψ_{ε} is the family of Friedrichs mollifiers defined in the lecture and χ_A is the characteristic function of $A \subset \mathbb{R}^d$. Note that for $x \in \mathbb{R}^d \setminus K^{2\varepsilon}$ we have

$$\eta(x) = \int_{\mathbb{R}^d} \psi_{\varepsilon}(y - x) \chi_{K^{\varepsilon}}(y) \, dy = \int_{K^{\varepsilon}} \psi_{\varepsilon}(y - x) \, dy = 0$$

since $\psi_{\varepsilon}(z) = 0$ for $|z| \ge \varepsilon$. This proves $\eta \in C_0^{\infty}(U)$. Furthermore, for $x \in K$ we have

$$\eta(x) = \int_{\mathbb{R}^d} \psi_{\varepsilon}(y-x)\chi_{K^{\varepsilon}}(y) \, dy = \int_{K^{\varepsilon}} \psi_{\varepsilon}(y-x) \, dy = \int_{\mathbb{R}^d} \psi_{\varepsilon}(y-x) dy = 1 \; ,$$

since for $y \notin K^{\varepsilon}$ and we have $\psi_{\varepsilon}(y-x) = 0$.

b.) At first one constructs a new open cover V_j of $\overline{\Omega}$ with the property that $\overline{V}_j \subset U_j$. This is done as follows. Set

$$F_1 = \overline{\Omega} \setminus \bigcup_{j=2}^m U_j \subset U_1 \; .$$

Note that F_1 is a compact set. Hence, there exists an open set $V_1 \supset F_1$ such that $\overline{V}_1 \subset U_1$. Similarly one finds the open sets $V_2, ..., V_m$. Set

$$F_k = \overline{\Omega} \setminus \left[\bigcup_{j=1}^{k-1} V_j \cup \bigcup_{j=k+1}^m U_j \right] \subset U_k , \quad \text{for } k = 2, ..., m .$$

and choose open sets $V_j \subset U_j$ such that $\overline{V}_j \subset U_j$ and $F_j \subset V_j$ for j = 2, ..., m. Note that the definition of F_k requires only the knowledge of $V_1, ..., V_{k-1}$.

According to part a.) there exist functions ϕ_j such that $\phi \in C_0^{\infty}(U_j)$, $0 \leq \phi_j \leq 1$ for j = 1, 2, ..., m, and $\phi(x) = 1$ for all $x \in \overline{V}_j$. Since $\overline{\Omega} \subset \bigcup_{k=1}^m V_k$, there exists an open set $V \supset \overline{\Omega}$ such that $V \subset \bigcup_{k=1}^m V_k$. Using part a.) there exists a function $\phi \in C_0^{\infty}(\bigcup_{k=1}^m V_k)$ with $0 \leq \phi \leq 1$ and $\phi(x) = 1$ for all $x \in V$. Finally, the functions ϕ_j and ϕ can be considered as functions in $C_0^{\infty}(\mathbb{R}^d)$.

Set now

$$\eta_j(x) = \begin{cases} \frac{\phi_j(x)}{(1 - \phi(x)) + \sum_{k=1}^m \phi_k(x)} & \text{for } x \in U_j ,\\ 0 & \text{for } x \notin U_j , \end{cases} \quad \text{for } j = 1, 2, ..., m .$$

and observe that $\eta_j \in C_0^{\infty}(\mathbb{R}^d)$, $0 \leq \eta_j \leq 1$ for j = 1, 2, ..., m, and that $\sum_{j=1}^m \eta_j(x) = 1$ for all $x \in \Omega$. The introduction of the function ϕ ensures that no division by zero occurs in

all $x \in \Omega$. The introduction of the function ϕ ensures that no division by zero occurs in this definition.

Note that this construction works - mutatis mutandis - in the situation where each U_j is a bounded, open subset of Ω such that $\overline{U}_j \subset \Omega$, every compact subset of Ω intersects only finitely many U_j and

$$\Omega = \bigcup_{j=1}^{\infty} U_j \; .$$

For details we refer to the book by Renardy and Rogers [1, Theorem 5.6]. This has been used in the proof of Theorem 3.13.

References

[1] Michael Renardy and Robert C. Rogers. An introduction to partial differential equations, volume 13 of Texts in Applied Mathematics. Springer-Verlag, New York, 1993.