SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #5 Solutions

Problem 1. Prove Corollary 3.15 from the lecture: If $v, w \in H^1(\Omega) = W_2^1(\Omega)$, then $u = vw \in W_1^1(\Omega)$ and

$$\partial_j u = (\partial_j v)w + v(\partial_j w)$$
 for $j = 1, 2, ..., d$.

Proof. With $v, w \in H^1(\Omega)$ we know that $v, w \in L_2(\Omega)$ and $\partial_j v, \partial_j w \in L_2(\Omega)$ for j = 1, 2, ..., d. By Hölder's inequality, we note that

$$\int_{\Omega} |u| \, dx = \int_{\Omega} |vw| \, dx \le \|v\|_{L_2(\Omega)} \|w\|_{L_2(\Omega)} \, .$$

This proves $u \in L_1(\Omega)$. By Theorem 3.13 we know that there exists sequences $v_n, w_n \in C^{\infty}(\Omega) \cap H^1(\Omega)$ such that $||v_n - v||_{H^1(\Omega)} \to 0$ and $||w_n - w||_{H^1(\Omega)} \to 0$ as $n \to \infty$. Since the functions v_n, w_n are smooth we know that

$$\partial_j(v_n w_n) = (\partial_j v_n) w_n + v_n (\partial_j w_n)$$

We will show that $v_n w_n \to u$ in $W_1^1(\Omega)$. Observe that, using the triangle inequality and Hölder's inequality

$$\int_{\Omega} |u - v_n w_n| \, dx = \int_{\Omega} |v w - v_n w_n| \, dx \le \int_{\Omega} |v - v_n| \, |w| \, dx + \int_{\Omega} |w - w_n| \, |v_n| \, dx$$
$$\le \|v - v_n\|_{L_2(\Omega)} \|w\|_{L_2(\Omega)} + \|w - w_n\|_{L_2(\Omega)} \|v_n\|_{L_2(\Omega)} \longrightarrow 0 \,, \quad \text{as } n \to \infty \,.$$

Furthermore, for j = 1, 2, ..., d we get using the same idea

$$\begin{split} \int_{\Omega} \left| \partial_{j} u_{n} - (\partial_{j} v) w - v(\partial_{j} w) \right| dx &\leq \int_{\Omega} \left| (\partial_{j} v_{n}) w_{n} - (\partial_{j} v) w \right| dx + \int_{\Omega} \left| v_{n}(\partial_{j} w_{n}) - v(\partial_{j} w) \right| dx \\ &\leq \int_{\Omega} \left| \partial_{j} (v_{n} - v) \right| \left| w_{n} \right| dx + \int_{\Omega} \left| \partial_{j} v \right| \left| w - w_{n} \right| dx \\ &+ \int_{\Omega} \left| \partial_{j} (w_{n} - w) \right| \left| v_{n} \right| dx + \int_{\Omega} \left| \partial_{j} w \right| \left| v - v_{n} \right| dx \\ &\leq \left\| \partial_{j} (v_{n} - v) \right\|_{L_{2}(\Omega)} \left\| w_{n} \right\|_{L_{2}(\Omega)} + \left\| \partial_{j} v \right\|_{L_{2}(\Omega)} \left\| w - w_{n} \right\|_{L_{2}(\Omega)} \\ &+ \left\| \partial_{j} (w_{n} - w) \right\|_{L_{2}(\Omega)} \left\| v_{n} \right\|_{L_{2}(\Omega)} + \left\| \partial_{j} w \right\|_{L_{2}(\Omega)} \left\| v - v_{n} \right\|_{L_{2}(\Omega)} \longrightarrow 0 \text{ as } n \to \infty . \end{split}$$

This proves that $\partial_j u_n$ converges in L_1 to some limit function U_j . Observe now that for $\varphi \in C_0^{\infty}(\Omega)$

$$\int_{\Omega} u_n \partial_j \varphi \, dx = -\int_{\Omega} \partial_j u_n \varphi \, dx \longrightarrow -\int_{\Omega} U_j \varphi \, dx \quad \text{as } n \to \infty \; .$$

Hence, the limit function U_j is the distributional derivative of u with respect to the x_j . \Box

Problem 2. Note that the operator S defined in Proposition 3.17 is a continuous linear functional on the Hilbert space $H^1(\mathbb{R})$. According to the Riesz representation theorem from functional analysis, $H^1(\mathbb{R})$ can be identified with its own dual space. More precisely, if S is a continuous linear functional there exists a function $v \in H^1(\mathbb{R})$ such that

$$Sf = \int_{\mathbb{R}} f'(x)v'(x) \, dx + \int_{\mathbb{R}} f(x)v(x) \, dx$$

Find the function $v \in H^1(\mathbb{R})$ which corresponds to the linear functional S. Solution. Choose $v(x) = e^{-|x|}/2$. Note that $v \in L_2(\mathbb{R})$ and that for $\phi \in C_0^{\infty}(\mathbb{R})$. Compute

$$v'(\varphi) = -\frac{1}{2} \int_{\mathbb{R}} v(x)\phi'(x) \, dx = -\frac{1}{2} \int_{-\infty}^{0} e^x \phi'(x) \, dx - \frac{1}{2} \int_{0}^{\infty} e^{-x} \phi'(x) \, dx$$
$$= \frac{1}{2} \int_{-\infty}^{0} e^x \phi(x) \, dx - \frac{1}{2} \phi(0) - \frac{1}{2} \int_{0}^{\infty} e^{-x} \phi(x) + \frac{1}{2} \phi(0)$$

which proves that the distributional derivative of v is the function

$$v'(x) = \begin{cases} \frac{e^x}{2} & \text{for } x < 0, \\ -\frac{e^{-x}}{2} & \text{for } x \ge 0. \end{cases}$$

One observe that $v'(x) \in L_2(\mathbb{R})$ and hence $v \in H^1(\mathbb{R})$.

Choose now $u \in C^1(\mathbb{R}) \cap H^1(\mathbb{R})$. Then, using the results of the computation above

$$\int_{\mathbb{R}} u(x)v(x) \, dx + \int_{\mathbb{R}} u'(x)v'(x) \, dx$$

= $\frac{1}{2} \int_{0}^{\infty} e^{-|x|}u(x) \, dx + \frac{1}{2} \int_{-\infty}^{0} e^{x}u'(x) \, dx - \frac{1}{2} \int_{0}^{\infty} u'(x)e^{-x} \, dx$
= $\frac{1}{2} \int_{0}^{\infty} e^{-|x|}u(x) \, dx - \frac{1}{2} \int_{0}^{\infty} e^{-|x|}u(x) \, dx + u(0) = u(0)$

Problem 3. In analogy to the definition of the weak solution to the Dirichlet problem (Definition 3.21), define the weak solution $u \in H^1(\Omega)$ to the Neumann problem

$$-\Delta u = f \in L_2(\Omega) ,$$
$$\partial_{\nu} u \Big|_{\partial\Omega} = g \in L_2(\partial\Omega) ,$$

and prove that a weak solution u to the Neumann problem with regularity $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is a classical solution. Here $\partial_{\nu} u = \nu \cdot \nabla u$ is the directional derivative in direction of the exterior unit normal ν along $\partial \Omega$. Can you tell why the homogeneous Neumann boundary condition is referred to as the *natural boundary condition*?

Solution. Let $u \in C^2(\Omega) \cap C(\overline{\Omega})$ be a classical solution to the Neumann Problem. Multiplying the equation with some function $\phi \in C^{\infty}(\overline{\Omega})$ and integrate over Ω gives

$$-\int_{\Omega} (\Delta u)\phi \, dx = \int_{\Omega} f\phi \, dx \; .$$

Performing integration by parts in the left integral gives

$$\int_{\Omega} \nabla u \cdot \nabla \phi \, dx = \int_{\partial \Omega} \partial_{\nu} u \phi \, dS + \int_{\Omega} f \phi \, dx$$

and using the boundary condition results in

$$\int_{\Omega} \nabla u \cdot \nabla \phi \, dx = \int_{\partial \Omega} g \phi \, dS + \int_{\Omega} f \phi \, dx$$

Here the assumption that Ω is of class C^1 (or that the boundary is locally the graph of a Lipschitz function) is important. This justifies the following definition.

Definition. Given $f \in L_2(\Omega)$ and $g \in L_2(\partial\Omega)$, a weak solution $u \in H^1(\Omega)$ to the Neumann problem satisfies the integral identity

$$\int_{\Omega} \nabla u \cdot \nabla \phi \, dx = \int_{\partial \Omega} g \phi \, dS + \int_{\Omega} f \phi \, dx$$

for all $\phi \in H^1(\Omega)$.

Suppose now that $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is a weak solution to the Neumann problem. Then the identity above holds for all $u \in H^1(\Omega)$. Choosing $\phi \in C^1(\overline{\Omega})$ with $\phi\Big|_{\partial \Omega} = 0$ gives

$$\int_{\Omega} \nabla u \cdot \nabla \phi \, dx = \int_{\Omega} f \phi \, dx \; .$$

and integration by parts on the left-hand side results in

$$-\int_{\Omega} \Delta u \phi \, dx = \int_{\Omega} f \phi \, dx \; .$$

Since this identity holds for all $\phi \in C^1(\Omega)$ with zero boundary values, one obtains that $-\Delta u = f$ in Ω in the sense of distributions. If $f \in C(\overline{\Omega})$ the equality holds pointwise.

Next we will verify the boundary condition. We start again with the identity given in the definition above and choose $\phi \in C^1(\overline{\Omega})$. After integration by parts in the left integral one obtains

$$\int_{\partial\Omega} \partial_{\nu} u\phi \, dS - \int_{\Omega} \Delta u\phi \, dx = \int_{\partial\Omega} g\phi \, dS + \int_{\Omega} f\phi \, dx \, .$$

The volume integrals cancel each other out and one gets

$$\int_{\partial\Omega} \partial_{\nu} u\phi \, dS = \int_{\partial\Omega} g\phi \, dS \; .$$

Since this is true for all $\phi \in C(\partial\Omega)$, one has $\partial_{\nu}u = g$ in the sense of distributions. Again, if $g \in C(\overline{\Omega})$, then the equality holds pointwise.

Finally, note that if g = 0, the weak solution for the Neumann problem looks like

$$\int_{\Omega} \nabla u \cdot \nabla \phi \, dx = \int_{\Omega} f \phi \, dx \; .$$

for all $\phi \in H^1(\Omega)$. There is no boundary integral in this identity. This is the reason that the homogeneous Neumann condition is the natural boundary condition.