SOMMERSEMESTER 2016 - HOHERE ANALYSIS II
LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #5 Solutions

Problem 1. Prove Corollary 3.15 from the lecture: If v,w € H'(Q) = W3(Q), then
u=vw € W}(Q) and

O;u = (0;v)w + v(0jw) for j=1,2,...,d.
Proof. With v,w € H'(Q) we know that v,w € Ly(Q) and d;v,0;w € Lo(Q) for j =
2,...,d. By Holder’s ineqality, we note that

[ tuldz = [ fouldo < olluollol o
Q Q

This proves u € L1(2). By Theorem 3.13 we know that there exists sequences v, w, €
C*>(Q) N H'(Q) such that |lv, — vl g1 — 0 and ||w, — w||g1e) — 0 as n — oo. Since
the functions v,,, w,, are smooth we know that

0j(vawy,) = (05vn)wy, + v, (Ojwy,)

We will show that v,w, — u in W} (). Observe that, using the triangle inequality and
Holder’s inequality

/|u—vnwn|dx:/|Uw—vnwn|dx§/]v—vn||w|dx—|—/|w—wn||vn|dx
Q Q 0

< v = vnlla@ lwllLa@) + llw = walla@ onllLa@) — 0 asn — o0

Furthermore, for j = 1,2, ..., d we get using the same idea

/Q |0;1,, — (0jv)w — v(0;w)| dz < / |(0jvn)wy, — (0jv)w| dx —i—/Q |vn (O5wn,) —v(0;w)| dx

/|0 |wn|dx+/|8jv| |lw — w,|dx
Q

+/|8j(wn—w)|\vn\dx+/|8jw| v — v,| dz
0 0

< N05(vn = V)| La@ 1wl () + 1050] o lw = wall L)
+ 110 (wn — w) | Lo 1on [l L2@) + 105wl L@ |0 = OnllLy@) — 0 as n — o0 .

This proves that Oju, converges in L; to some limit function U;. Observe now that for

¢ € G (92)

/u,ﬁjgodx:—/@junapdx—)—/Ujgodx as n — 0o .
Q Q Q

Hence, the limit function Uj is the distributional derivative of u with respect to the z;. [
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Problem 2. Note that the operator S defined in Proposition 3.17 is a continuous linear
functional on the Hilbert space H!'(R). According to the Riesz representation theorem
from functional analysis, H!(R) can be identified with its own dual space. More precisely,
if S is a continuous linear functional there exists a function v € H'(R) such that

Sf:/Rf'(m)v’(x)dm~l—/Rf(x)v(x)dx

Find the function v € H'(R) which corresponds to the linear functional S.
Solution. Choose v(z) = e~1#1 /2. Note that v € Ly(R) and that for ¢ € C3°(R). Compute

1 I I
V(p)=—= / v(x)d' (z) doe = ——/ "¢ (x)dx — —/ e ¢ (z) dx
2 Je 2/ . 2 J,
[0, 1 L[~ 1
5 | o =000 =5 [ o + 500

which proves that the distributional derivative of v is the function

c forx <0,
’l),(l‘> = 672:5

) forx>0.

One observe that v'(z) € Ly(R) and hence v € H'(R).
Choose now u € C'(R) N H*(R). Then, using the results of the computation above

/R w(@)o(x) dz + / o ()0 (2) da

R
L[~ —|z| 1[0 x, ! L=, —z
= - e lu(x)de + = e“u'(z)de — = u'(x)e * dx
2 J, 2] 2 J,
1 [~ 1 [
= —/ e "lu(z) dx — = / e llu(z) dz + u(0) = u(0)
2.Jo 2.Jo

Problem 3. In analogy to the definition of the weak solution to the Dirichlet problem
(Definition 3.21), define the weak solution u € H'(Q) to the Neumann problem

o,u o =Y € Ly(09)

and prove that a weak solution u to the Neumann problem with regularity u € C*(Q) N
C(Q) is a classical solution. Here d,u = v - Vu is the directional derivative in direction
of the exterior unit normal v along 0€2. Can you tell why the homogeneous Neumann
boundary condition is referred to as the natural boundary condition ?

Solution. Let u € C?(2) N C(Q) be a classical solution to the Neumann Problem. Multi-

plying the equation with some function ¢ € C*°(Q2) and integrate over ) gives

—/Q(Au)qbdx:/gfgbdx.

Performing integration by parts in the left integral gives

/Vu-quﬁdx: 8Vu¢d5+/fgbda:
Q Q
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and using the boundary condition results in

/QVu-ngdm:/angde—l—/ﬂfqbdx.

Here the assumption that §2 is of class C! (or that the boundary is locally the graph of a
Lipschitz function) is important. This justifies the following definition.

Definition. Given f € Ly(Q) and g € Ly(09), a weak solution u € H'(Q) to the
Neumann problem satisfies the integral identity

/QVU-V¢d:B:/angde+/Qf¢dx.
for all o € HY(Q).

Suppose now that u € C?(2) N C(Q) is a weak solution to the Neumann problem. Then
the identity above holds for all u € H'(Q2). Choosing ¢ € C*(Q) with ¢ o 0 gives

/QVu-V¢d:1::/Qf¢d:v.

and integration by parts on the left-hand side results in

—/QAud)dw—/qubda:.

Since this identity holds for all ¢ € C*(Q) with zero boundary values, one obtains that
—Au = f in Q in the sense of distributions. If f € C(Q) the equality holds pointwise.

Next we will verify the boundary condition. We start again with the identity given in
the definition above and choose ¢ € C'(Q2). After integration by parts in the left integral
one obtains

m@,,ugde—/QAugbdx:/mggdenL/Qfgzﬁdx.

The volume integrals cancel each other out and one gets

/8,,uqde: g dsS .
[2)9] o)

Since this is true for all ¢ € C(99), one has 9,u = g in the sense of distributions. Again,

if g € C(Q)), then the equality holds pointwise.
Finally, note that if g = 0, the weak solution for the Neumann problem looks like

/QVU-VQde:/Qfgbd:v.

for all ¢ € H'(2). There is no boundary integral in this identity. This is the reason that
the homogeneous Neumann condition is the natural boundary condition.



