
SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II
LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #5 Solutions

Problem 1. Prove Corollary 3.15 from the lecture: If v, w ∈ H1(Ω) = W 1
2 (Ω), then

u = vw ∈ W 1
1 (Ω) and

∂ju = (∂jv)w + v(∂jw) for j = 1, 2, ..., d .

Proof. With v, w ∈ H1(Ω) we know that v, w ∈ L2(Ω) and ∂jv, ∂jw ∈ L2(Ω) for j =
1, 2, ..., d. By Hölder’s ineqality, we note that∫

Ω

|u| dx =

∫
Ω

|vw| dx ≤ ‖v‖L2(Ω)‖w‖L2(Ω) .

This proves u ∈ L1(Ω). By Theorem 3.13 we know that there exists sequences vn, wn ∈
C∞(Ω) ∩H1(Ω) such that ‖vn − v‖H1(Ω) → 0 and ‖wn − w‖H1(Ω) → 0 as n → ∞. Since
the functions vn, wn are smooth we know that

∂j(vnwn) = (∂jvn)wn + vn(∂jwn)

We will show that vnwn → u in W 1
1 (Ω). Observe that, using the triangle inequality and

Hölder’s inequality∫
Ω

|u− vnwn| dx =

∫
Ω

|vw − vnwn| dx ≤
∫

Ω

|v − vn| |w| dx+

∫
Ω

|w − wn| |vn| dx

≤ ‖v − vn‖L2(Ω)‖w‖L2(Ω) + ‖w − wn‖L2(Ω)‖vn‖L2(Ω) −→ 0 , as n→∞ .

Furthermore, for j = 1, 2, ..., d we get using the same idea∫
Ω

|∂jun− (∂jv)w− v(∂jw)| dx ≤
∫

Ω

|(∂jvn)wn− (∂jv)w| dx+

∫
Ω

|vn(∂jwn)− v(∂jw)| dx

≤
∫

Ω

|∂j(vn − v)| |wn| dx+

∫
Ω

|∂jv| |w − wn| dx

+

∫
Ω

|∂j(wn − w)| |vn| dx+

∫
Ω

|∂jw| |v − vn| dx

≤ ‖∂j(vn − v)‖L2(Ω)‖wn‖L2(Ω) + ‖∂jv‖L2(Ω)‖w − wn‖L2(Ω)

+ ‖∂j(wn − w)‖L2(Ω)‖vn‖L2(Ω) + ‖∂jw‖L2(Ω)‖v − vn‖L2(Ω) −→ 0 as n→∞ .

This proves that ∂jun converges in L1 to some limit function Uj. Observe now that for
ϕ ∈ C∞0 (Ω) ∫

Ω

un∂jϕdx = −
∫

Ω

∂junϕdx −→ −
∫

Ω

Ujϕdx as n→∞ .

Hence, the limit function Uj is the distributional derivative of u with respect to the xj. �
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Problem 2. Note that the operator S defined in Proposition 3.17 is a continuous linear
functional on the Hilbert space H1(R). According to the Riesz representation theorem
from functional analysis, H1(R) can be identified with its own dual space. More precisely,
if S is a continuous linear functional there exists a function v ∈ H1(R) such that

Sf =

∫
R
f ′(x)v′(x) dx+

∫
R
f(x)v(x) dx

Find the function v ∈ H1(R) which corresponds to the linear functional S.

Solution. Choose v(x) = e−|x|/2. Note that v ∈ L2(R) and that for φ ∈ C∞0 (R). Compute

v′(ϕ) = −1

2

∫
R
v(x)φ′(x) dx = −1

2

∫ 0

−∞
exφ′(x) dx− 1

2

∫ ∞
0

e−xφ′(x) dx

=
1

2

∫ 0

−∞
exφ(x) dx− 1

2
φ(0)− 1

2

∫ ∞
0

e−xφ(x) +
1

2
φ(0)

which proves that the distributional derivative of v is the function

v′(x) =


ex

2
for x < 0 ,

−e
−x

2
for x ≥ 0 .

One observe that v′(x) ∈ L2(R) and hence v ∈ H1(R).
Choose now u ∈ C1(R) ∩H1(R). Then, using the results of the computation above∫
R
u(x)v(x) dx+

∫
R
u′(x)v′(x) dx

=
1

2

∫ ∞
0

e−|x|u(x) dx+
1

2

∫ 0

−∞
exu′(x) dx− 1

2

∫ ∞
0

u′(x)e−x dx

=
1

2

∫ ∞
0

e−|x|u(x) dx− 1

2

∫ ∞
0

e−|x|u(x) dx+ u(0) = u(0)

Problem 3. In analogy to the definition of the weak solution to the Dirichlet problem
(Definition 3.21), define the weak solution u ∈ H1(Ω) to the Neumann problem

−∆u = f ∈ L2(Ω) ,

∂νu
∣∣∣
∂Ω

= g ∈ L2(∂Ω) ,

and prove that a weak solution u to the Neumann problem with regularity u ∈ C2(Ω) ∩
C(Ω) is a classical solution. Here ∂νu = ν · ∇u is the directional derivative in direction
of the exterior unit normal ν along ∂Ω. Can you tell why the homogeneous Neumann
boundary condition is referred to as the natural boundary condition ?

Solution. Let u ∈ C2(Ω) ∩ C(Ω) be a classical solution to the Neumann Problem. Multi-
plying the equation with some function φ ∈ C∞(Ω) and integrate over Ω gives

−
∫

Ω

(∆u)φ dx =

∫
Ω

fφ dx .

Performing integration by parts in the left integral gives∫
Ω

∇u · ∇φ dx =

∫
∂Ω

∂νuφ dS +

∫
Ω

fφ dx



and using the boundary condition results in∫
Ω

∇u · ∇φ dx =

∫
∂Ω

gφ dS +

∫
Ω

fφ dx .

Here the assumption that Ω is of class C1 (or that the boundary is locally the graph of a
Lipschitz function) is important. This justifies the following definition.
Definition. Given f ∈ L2(Ω) and g ∈ L2(∂Ω), a weak solution u ∈ H1(Ω) to the
Neumann problem satisfies the integral identity∫

Ω

∇u · ∇φ dx =

∫
∂Ω

gφ dS +

∫
Ω

fφ dx .

for all φ ∈ H1(Ω).
Suppose now that u ∈ C2(Ω) ∩ C(Ω) is a weak solution to the Neumann problem. Then

the identity above holds for all u ∈ H1(Ω). Choosing φ ∈ C1(Ω) with φ
∣∣∣
∂Ω

= 0 gives∫
Ω

∇u · ∇φ dx =

∫
Ω

fφ dx .

and integration by parts on the left-hand side results in

−
∫

Ω

∆uφ dx =

∫
Ω

fφ dx .

Since this identity holds for all φ ∈ C1(Ω) with zero boundary values, one obtains that
−∆u = f in Ω in the sense of distributions. If f ∈ C(Ω) the equality holds pointwise.

Next we will verify the boundary condition. We start again with the identity given in
the definition above and choose φ ∈ C1(Ω). After integration by parts in the left integral
one obtains ∫

∂Ω

∂νuφ dS −
∫

Ω

∆uφ dx =

∫
∂Ω

gφ dS +

∫
Ω

fφ dx .

The volume integrals cancel each other out and one gets∫
∂Ω

∂νuφ dS =

∫
∂Ω

gφ dS .

Since this is true for all φ ∈ C(∂Ω), one has ∂νu = g in the sense of distributions. Again,
if g ∈ C(Ω), then the equality holds pointwise.

Finally, note that if g = 0, the weak solution for the Neumann problem looks like∫
Ω

∇u · ∇φ dx =

∫
Ω

fφ dx .

for all φ ∈ H1(Ω). There is no boundary integral in this identity. This is the reason that
the homogeneous Neumann condition is the natural boundary condition.


