SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#5 Solutions

Problem 1. Prove Corollary 3.15 from the lecture: If $v, w \in H^{1}(\Omega)=W_{2}^{1}(\Omega)$, then $u=v w \in W_{1}^{1}(\Omega)$ and

$$
\partial_{j} u=\left(\partial_{j} v\right) w+v\left(\partial_{j} w\right) \quad \text { for } j=1,2, \ldots, d
$$

Proof. With $v, w \in H^{1}(\Omega)$ we know that $v, w \in L_{2}(\Omega)$ and $\partial_{j} v, \partial_{j} w \in L_{2}(\Omega)$ for $j=$ $1,2, \ldots, d$. By Hölder's ineqality, we note that

$$
\int_{\Omega}|u| d x=\int_{\Omega}|v w| d x \leq\|v\|_{L_{2}(\Omega)}\|w\|_{L_{2}(\Omega)} .
$$

This proves $u \in L_{1}(\Omega)$. By Theorem 3.13 we know that there exists sequences $v_{n}, w_{n} \in$ $C^{\infty}(\Omega) \cap H^{1}(\Omega)$ such that $\left\|v_{n}-v\right\|_{H^{1}(\Omega)} \rightarrow 0$ and $\left\|w_{n}-w\right\|_{H^{1}(\Omega)} \rightarrow 0$ as $n \rightarrow \infty$. Since the functions v_{n}, w_{n} are smooth we know that

$$
\partial_{j}\left(v_{n} w_{n}\right)=\left(\partial_{j} v_{n}\right) w_{n}+v_{n}\left(\partial_{j} w_{n}\right)
$$

We will show that $v_{n} w_{n} \rightarrow u$ in $W_{1}^{1}(\Omega)$. Observe that, using the triangle inequality and Hölder's inequality

$$
\begin{aligned}
\int_{\Omega}\left|u-v_{n} w_{n}\right| d x & =\int_{\Omega}\left|v w-v_{n} w_{n}\right| d x \leq \int_{\Omega}\left|v-v_{n}\right||w| d x+\int_{\Omega}\left|w-w_{n}\right|\left|v_{n}\right| d x \\
& \leq\left\|v-v_{n}\right\|_{L_{2}(\Omega)}\|w\|_{L_{2}(\Omega)}+\left\|w-w_{n}\right\|_{L_{2}(\Omega)}\left\|v_{n}\right\|_{L_{2}(\Omega)} \longrightarrow 0, \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Furthermore, for $j=1,2, \ldots, d$ we get using the same idea

$$
\begin{gathered}
\int_{\Omega} \mid \partial_{j} u_{n}-\left(\partial_{j} v\right) w- \\
\leq\left(\partial_{j} w\right)\left|d x \leq \int_{\Omega}\right|\left(\partial_{j} v_{n}\right) w_{n}-\left(\partial_{j} v\right) w\left|d x+\int_{\Omega}\right| v_{n}\left(\partial_{j} w_{n}\right)-v\left(\partial_{j} w\right) \mid d x \\
\leq \int_{\Omega}\left|\partial_{j}\left(v_{n}-v\right)\right|\left|w_{n}\right| d x+\int_{\Omega}\left|\partial_{j} v\right|\left|w-w_{n}\right| d x \\
\quad+\int_{\Omega}\left|\partial_{j}\left(w_{n}-w\right)\right|\left|v_{n}\right| d x+\int_{\Omega}\left|\partial_{j} w\right|\left|v-v_{n}\right| d x \\
\leq\left\|\partial_{j}\left(v_{n}-v\right)\right\|_{L_{2}(\Omega)}\left\|w_{n}\right\|_{L_{2}(\Omega)}+\left\|\partial_{j} v\right\|_{L_{2}(\Omega)}\left\|w-w_{n}\right\|_{L_{2}(\Omega)} \\
+\left\|\partial_{j}\left(w_{n}-w\right)\right\|_{L_{2}(\Omega)}\left\|v_{n}\right\|_{L_{2}(\Omega)}+\left\|\partial_{j} w\right\|_{L_{2}(\Omega)}\left\|v-v_{n}\right\|_{L_{2}(\Omega)} \longrightarrow 0 \text { as } n \rightarrow \infty
\end{gathered}
$$

This proves that $\partial_{j} u_{n}$ converges in L_{1} to some limit function U_{j}. Observe now that for $\varphi \in C_{0}^{\infty}(\Omega)$

$$
\int_{\Omega} u_{n} \partial_{j} \varphi d x=-\int_{\Omega} \partial_{j} u_{n} \varphi d x \longrightarrow-\int_{\Omega} U_{j} \varphi d x \quad \text { as } n \rightarrow \infty .
$$

Hence, the limit function U_{j} is the distributional derivative of u with respect to the x_{j}.

Problem 2. Note that the operator S defined in Proposition 3.17 is a continuous linear functional on the Hilbert space $H^{1}(\mathbb{R})$. According to the Riesz representation theorem from functional analysis, $H^{1}(\mathbb{R})$ can be identified with its own dual space. More precisely, if S is a continuous linear functional there exists a function $v \in H^{1}(\mathbb{R})$ such that

$$
S f=\int_{\mathbb{R}} f^{\prime}(x) v^{\prime}(x) d x+\int_{\mathbb{R}} f(x) v(x) d x
$$

Find the function $v \in H^{1}(\mathbb{R})$ which corresponds to the linear functional S.
Solution. Choose $v(x)=e^{-|x|} / 2$. Note that $v \in L_{2}(\mathbb{R})$ and that for $\phi \in C_{0}^{\infty}(\mathbb{R})$. Compute

$$
\begin{aligned}
v^{\prime}(\varphi) & =-\frac{1}{2} \int_{\mathbb{R}} v(x) \phi^{\prime}(x) d x=-\frac{1}{2} \int_{-\infty}^{0} e^{x} \phi^{\prime}(x) d x-\frac{1}{2} \int_{0}^{\infty} e^{-x} \phi^{\prime}(x) d x \\
& =\frac{1}{2} \int_{-\infty}^{0} e^{x} \phi(x) d x-\frac{1}{2} \phi(0)-\frac{1}{2} \int_{0}^{\infty} e^{-x} \phi(x)+\frac{1}{2} \phi(0)
\end{aligned}
$$

which proves that the distributional derivative of v is the function

$$
v^{\prime}(x)=\left\{\begin{aligned}
\frac{e^{x}}{2} & \text { for } x<0 \\
-\frac{e^{-x}}{2} & \text { for } x \geq 0
\end{aligned}\right.
$$

One observe that $v^{\prime}(x) \in L_{2}(\mathbb{R})$ and hence $v \in H^{1}(\mathbb{R})$.
Choose now $u \in C^{1}(\mathbb{R}) \cap H^{1}(\mathbb{R})$. Then, using the results of the computation above

$$
\begin{aligned}
& \int_{\mathbb{R}} u(x) v(x) d x+\int_{\mathbb{R}} u^{\prime}(x) v^{\prime}(x) d x \\
& =\frac{1}{2} \int_{0}^{\infty} e^{-|x|} u(x) d x+\frac{1}{2} \int_{-\infty}^{0} e^{x} u^{\prime}(x) d x-\frac{1}{2} \int_{0}^{\infty} u^{\prime}(x) e^{-x} d x \\
& =\frac{1}{2} \int_{0}^{\infty} e^{-|x|} u(x) d x-\frac{1}{2} \int_{0}^{\infty} e^{-|x|} u(x) d x+u(0)=u(0)
\end{aligned}
$$

Problem 3. In analogy to the definition of the weak solution to the Dirichlet problem (Definition 3.21), define the weak solution $u \in H^{1}(\Omega)$ to the Neumann problem

$$
\begin{gathered}
-\Delta u=f \in L_{2}(\Omega), \\
\left.\partial_{\nu} u\right|_{\partial \Omega}=g \in L_{2}(\partial \Omega),
\end{gathered}
$$

and prove that a weak solution u to the Neumann problem with regularity $u \in C^{2}(\Omega) \cap$ $C(\bar{\Omega})$ is a classical solution. Here $\partial_{\nu} u=\nu \cdot \nabla u$ is the directional derivative in direction of the exterior unit normal ν along $\partial \Omega$. Can you tell why the homogeneous Neumann boundary condition is referred to as the natural boundary condition?
Solution. Let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be a classical solution to the Neumann Problem. Multiplying the equation with some function $\phi \in C^{\infty}(\bar{\Omega})$ and integrate over Ω gives

$$
-\int_{\Omega}(\Delta u) \phi d x=\int_{\Omega} f \phi d x
$$

Performing integration by parts in the left integral gives

$$
\int_{\Omega} \nabla u \cdot \nabla \phi d x=\int_{\partial \Omega} \partial_{\nu} u \phi d S+\int_{\Omega} f \phi d x
$$

and using the boundary condition results in

$$
\int_{\Omega} \nabla u \cdot \nabla \phi d x=\int_{\partial \Omega} g \phi d S+\int_{\Omega} f \phi d x .
$$

Here the assumption that Ω is of class C^{1} (or that the boundary is locally the graph of a Lipschitz function) is important. This justifies the following definition.
Definition. Given $f \in L_{2}(\Omega)$ and $g \in L_{2}(\partial \Omega)$, a weak solution $u \in H^{1}(\Omega)$ to the Neumann problem satisfies the integral identity

$$
\int_{\Omega} \nabla u \cdot \nabla \phi d x=\int_{\partial \Omega} g \phi d S+\int_{\Omega} f \phi d x .
$$

for all $\phi \in H^{1}(\Omega)$.
Suppose now that $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is a weak solution to the Neumann problem. Then the identity above holds for all $u \in H^{1}(\Omega)$. Choosing $\phi \in C^{1}(\bar{\Omega})$ with $\left.\phi\right|_{\partial \Omega}=0$ gives

$$
\int_{\Omega} \nabla u \cdot \nabla \phi d x=\int_{\Omega} f \phi d x .
$$

and integration by parts on the left-hand side results in

$$
-\int_{\Omega} \Delta u \phi d x=\int_{\Omega} f \phi d x .
$$

Since this identity holds for all $\phi \in C^{1}(\bar{\Omega})$ with zero boundary values, one obtains that $-\Delta u=f$ in Ω in the sense of distributions. If $f \in C(\bar{\Omega})$ the equality holds pointwise.

Next we will verify the boundary condition. We start again with the identity given in the definition above and choose $\phi \in C^{1}(\bar{\Omega})$. After integration by parts in the left integral one obtains

$$
\int_{\partial \Omega} \partial_{\nu} u \phi d S-\int_{\Omega} \Delta u \phi d x=\int_{\partial \Omega} g \phi d S+\int_{\Omega} f \phi d x
$$

The volume integrals cancel each other out and one gets

$$
\int_{\partial \Omega} \partial_{\nu} u \phi d S=\int_{\partial \Omega} g \phi d S .
$$

Since this is true for all $\phi \in C(\partial \Omega)$, one has $\partial_{\nu} u=g$ in the sense of distributions. Again, if $g \in C(\bar{\Omega})$, then the equality holds pointwise.

Finally, note that if $g=0$, the weak solution for the Neumann problem looks like

$$
\int_{\Omega} \nabla u \cdot \nabla \phi d x=\int_{\Omega} f \phi d x
$$

for all $\phi \in H^{1}(\Omega)$. There is no boundary integral in this identity. This is the reason that the homogeneous Neumann condition is the natural boundary condition.

