SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #6 due 5/31

Problem 1. Consider the Neumann problem for the Laplace operator in a bounded domain of class C^1 . Define the Green function N(x, y) (also sometimes called the Neumann function) and give a formal solution formula for Neumann problem

$$-\Delta u = f \in L_2(\Omega) ,$$

$$\partial_{\nu} u \Big|_{\partial\Omega} = g \in L_2(\partial\Omega) .$$

Problem 2. Derive the Green function G(x, y) for the Dirichlet problem for the Laplacian in the ball $B_R(0)$ (R > 0 fixed) in the case $d \ge 3$ and derive a formula for the solution of the Dirichlet problem

$$-\Delta u = 0$$
 in $B_R(0)$, $u = g \in C(\partial B_R(0))$.

State a Theorem similar to Theorem 4.7 and prove it. Hint: For $x \neq 0$ set

$$G(x,y) = \frac{1}{d(d-2)\omega_d} \left[|x-y|^{2-d} - a|bx-y|^{2-d} \right]$$

and choose $a \in \mathbb{R}$ and b > R/|x| such that G(x,y) = 0 for all $0 \neq x \in B_R(0)$ and $y \in \partial B_R(0)$.

Problem 3. The chain rule for Sobolev functions. Suppose that $f \in C^1(\mathbb{R}) \cap W^1_{\infty}(\mathbb{R})$ and let $u \in W^1_p(\Omega)$ for some $p \in [1, \infty)$ where $\Omega \subset \mathbb{R}^d$ is open and bounded. Prove that $f \circ u \in W^1_p(\Omega)$ and $\partial_j (f \circ u) = f'(u) \partial_j u$ in $L_p(\Omega)$ for j = 1, ..., d. Does this chain rule also hold in the case that $p = \infty$?