SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#6 Solutions

Problem 1. Consider the Neumann problem for the Laplace operator in a bounded domain of class C^{1}. Define the Green function $N(x, y)$ (also sometimes called the Neumann function) and give a formal solution formula for Neumann problem

$$
\begin{aligned}
-\Delta u & =f \in L_{2}(\Omega) \\
\left.\partial_{\nu} u\right|_{\partial \Omega} & =g \in L_{2}(\partial \Omega) .
\end{aligned}
$$

If $\Psi(x)$ is a fundamental solution for the Laplace operator, and $u \in C^{2}(\bar{\Omega})$, then according to Proposition 4.5 we have with $G(x, y)=\Psi(x-y)$ that

$$
u(x)=-\int_{\Omega} G(x, y) \Delta u(y) d y-\int_{\partial \Omega} \partial_{\nu(y)} G(x, y) u(y) d S(y)+\int_{\partial \Omega} G(x, y) \partial_{\nu(y)} u(y) d S(y)
$$

In the case of the Neumann problem we do not have any information about the function u on the boundary whereas Δu in Ω and $\nu \cdot \nabla u$ on $\partial \Omega$ are know. Hence, the Neumann function $N(x, y)$ is a fundamental solution which satisfies the condition that

$$
\nu(y) \cdot \nabla_{y} N(x, y)=0 \quad \text { for all } x \in \Omega, y \in \partial \Omega
$$

Note that if this condition is satisfies, the formula above reads as

$$
u(x)=-\int_{\Omega} N(x, y) f(y) d y+\int_{\partial \Omega} N(x, y) g(y) d S(y)
$$

Construction of the Neumann function. Let Φ be the fundamental solution introduced in Definition 4.1. Suppose that the function $H(x, y)$ satisfies the following Neumann boundary value problem

$$
\begin{aligned}
\Delta_{y} H(x, y) & =0 \quad \text { for all } x, y \in \Omega \\
\partial_{\nu(y)} H(x, y) & =-\partial_{\nu(y)} \Phi(x-y) \quad \text { for all } y \in \partial \Omega, x \in \Omega .
\end{aligned}
$$

Then the Neumann function is given by $N(x, y)=\Phi(x-y)+H(x, y)$.
Problem 2. Derive the Green function $G(x, y)$ for the Dirichlet problem for the Laplacian in the ball $B_{R}(0)(R>0$ fixed $)$ in the case $d \geq 3$ and derive a formula for the solution of the Dirichlet problem

$$
-\Delta u=0 \text { in } B_{R}(0) \quad u=g \in C\left(\partial B_{R}(0)\right) .
$$

State a Theorem similar to Theorem 4.8 and prove it. Hint: For $x \neq 0$ set

$$
G(x, y)=\frac{1}{d(d-2) \omega_{d}}\left[|x-y|^{2-d}-a|b x-y|^{2-d}\right]
$$

and choose $a \in \mathbb{R}$ and $b>R /|x|$ such that $G(x, y)=0$ for all $0 \neq x \in B_{R}(0)$ and $y \in \partial B_{R}(0)$.

Solution. Note that for $x \in B_{r}(0)$ the function $G(x, y)$ satisfies $-\Delta_{y} G(x, y)=\delta_{x}$ as long as $b x \notin B_{R}(0)$. Fix $x \in B_{R}(0) \backslash\{0\}$. Then $G(x, y)=0$ holds if for all $|y|=R$

$$
a^{2 /(2-d)}\left[b^{2}|x|^{2}-2 b x \cdot y+R^{2}\right]=|x|^{2}-2 x \cdot y+R^{2} .
$$

Choose now $a^{(2-d) / 2}=b$. Then the equation is true if and only if

$$
b^{2}|x|^{2}+R^{2}=b\left(|x|^{2}+R^{2}\right) \quad \text { or } \quad b(b-1)|x|^{2}=(b-1) R^{2} .
$$

Hence, $b=R^{2} /|x|^{2}$ and the Green function for the ball is

$$
\begin{aligned}
G(x, y) & =\frac{1}{d(d-2) \omega_{d}}\left[|x-y|^{2-d}-\left(\frac{|x|}{R}\right)^{2-d}\left|\frac{R^{2}}{|x|^{2}} x-y\right|^{2-d}\right] \\
& =\frac{1}{d(d-2) \omega_{d}}\left[|x-y|^{2-d}-\left|\frac{R}{|x|} x-\frac{|x|}{R} y\right|^{2-d}\right] \\
& =\frac{1}{d(d-2) \omega_{d}}\left[|x-y|^{2-d}-\left(R^{2}-2 x \cdot y+|x|^{2}|y|^{2} / R^{2}\right)^{2-d}\right],
\end{aligned}
$$

which is well-defined also for $x=0$.
Compute now, for $x \in B_{R}(0)$ and $|y|=R$, using the formula for the gradient of the fundamental solution given before Theorem 4.2,

$$
\begin{aligned}
\nu(y) \cdot \nabla_{y} G(x, y) & =\frac{1}{d \omega_{d}}\left[\frac{y}{R} \frac{x-y}{|x-y|^{d}}-\frac{y}{R}\left(\frac{|x|}{R}\right)^{2-d} \frac{R^{2} x /|x|^{2}-y}{\left|R^{2} x /|x|^{2}-y\right|^{d}}\right] \\
& =\frac{1}{d \omega_{d}}\left[\frac{y \cdot x-R^{2}}{R|x-y|^{d}}-\frac{|x|^{d}}{R^{3-d}} \frac{R^{2} x \cdot y-R^{2}|x|^{2}}{\left.\left.\left|R^{2} x-y\right| x\right|^{2}\right|^{d}}\right] \\
& =\frac{1}{d \omega_{d}}\left[\frac{y \cdot x-R^{2}}{R|x-y|^{d}}-\frac{1}{R} \frac{x \cdot y-|x|^{2}}{|x-y|^{d}}\right]=\frac{1}{d \omega_{d} R} \frac{|x|^{2}-R^{2}}{|x-y|^{d}}
\end{aligned}
$$

Theorem. Suppose that $g \in C\left(\partial B_{R}(0)\right)$. Then the function

$$
u(x)=\frac{R^{2}-|x|^{2}}{d \omega_{d} R} \int_{\partial B_{R}(0)} \frac{g(y)}{|x-y|^{d}} d S(y)
$$

has the regularity $u \in C^{\infty}\left(B_{R}(0)\right) \cap L_{\infty}\left(B_{R}(0)\right)$, satisfies the equation $-\Delta u=0$ in $B_{R}(0)$, and $u(x)=g(x)$ for all $x \in \partial B_{R}(0)$ in the sense that for all $\underline{x} \in \partial B_{R}(0)$

$$
\lim _{x_{l} \rightarrow \underline{x}} u\left(x_{l}\right)=g(\underline{x})
$$

for all sequences $\left\{x_{l}\right\} \subset B_{R}(0)$ converging to $\underline{x} \in \partial B_{R}(0)$.
Proof. For all $x \in B_{R}(0)$ one verifies that $\partial_{j} u(x)$ can be computed by the differentiation into the integral which can be done since $x \neq y$. This can be done for all derivatives of higher order as well and gives $u \in C^{\infty}\left(B_{R}(0)\right)$. Next compute for $x \in B_{R}(0)$ and $|y|=R$,
using the quotient rule of differential calculus,

$$
\begin{gathered}
\Delta_{x} \frac{|x|^{2}-R^{2}}{|x-y|^{d}}=\nabla_{x} \cdot \nabla_{x} \frac{|x|^{2}-R^{2}}{|x-y|^{d}}=\nabla_{x} \cdot \frac{2 x|x-y|^{d}-d\left(|x|^{2}-R^{2}\right)|x-y|^{d-2}(x-y)}{|x-y|^{2 d}} \\
=\nabla_{x} \cdot \frac{2 x}{|x-y|^{d}}-\nabla_{x} \cdot \frac{d\left(|x|^{2}-R^{2}\right)(x-y)}{|x-y|^{d+2}} \\
=\frac{2 d}{|x-y|^{d}}-\frac{2 d\left(|x|^{2}-x \cdot y\right)}{|x-y|^{d+2}}-\frac{2 d x \cdot(x-y)-d^{2}\left(|x|^{2}-R^{2}\right)}{|x-y|^{d+2}}+\frac{d(d+2)\left(|x|^{2}-R^{2}\right)}{|x-y|^{d+2}} \\
=\frac{2 d(x-y)^{2}}{|x-y|^{d+2}}-\frac{4 d\left[|x|^{2}-x \cdot y\right]-2 d\left(|x|^{2}-R^{2}\right)}{|x-y|^{d+2}}=\frac{2 d\left[|y|^{2}-R^{2}\right]}{|x-y|^{d+2}}=0 .
\end{gathered}
$$

This shows that $-\Delta u=0$, pointwise in $B_{R}(0)$. Next we will show that $u \in L_{\infty}(\Omega)$. For that purpose set

$$
K(x, y)=\frac{1}{d \omega_{d} R} \frac{R^{2}-|x|^{2}}{|x-y|^{d}}
$$

and observe that for $K>0$ for $x \in B_{R}(0)$. Then, choosing $g \equiv 1$ and using Proposition 4.5 with $\Omega=B_{R}(0)$ we obtain

$$
\int_{\partial B_{R}(0)} K(x, y) d S(y)=1
$$

From here the proof is completed as the proof of Theorem 4.7.
A perhaps simpler way of proving $\Delta_{x} K(x, y)=0$ for $x \in B_{R}(0)$ and $|y|=R$ is based on the fact that $G(x, y)=G(y, x)$ whenever $x \neq y$ and that $K(x, y)=\partial_{\nu(y)} G(x, y)$ for $y \in \partial B_{R}(0)$.
Problem 3. The chain rule for Sobolev functions. Suppose that $f \in C^{1}(\mathbb{R}) \cap W_{\infty}^{1}(\mathbb{R})$ and let $u \in W_{p}^{1}(\Omega)$ for some $p \in[1, \infty)$ where $\Omega \subset \mathbb{R}^{d}$ is open and bounded. Prove that $f \circ u \in W_{p}^{1}(\Omega)$ and $\partial_{j}(f \circ u)=f^{\prime}(u) \partial_{j} u$ in $L_{p}(\Omega)$ for $j=1, . ., d$. Does this chain rule also hold in the case that $p=\infty$?

Proof. Fix $p \in[1, \infty)$. Note that $f \circ u \in L_{p}(\Omega)$ since $f \circ u \in L_{\infty}(\Omega)$ and Ω is bounded. By Theorem 3.13 there exists a sequence $u_{m} \in C^{\infty}(\Omega) \cap W_{p}^{1}(\Omega)$ such that $\left\|u_{m}-u\right\|_{W_{p}^{1}(\Omega)} \rightarrow 0$ as $m \rightarrow \infty$. Note that this convergence implies that $u_{n} \rightarrow u$ almost everywhere. The chain rule is true for differentiable functions, hence we have

$$
\partial_{j}(f \circ u)=f^{\prime}\left(u_{m}\right) \partial_{j} u_{m} \quad \text { for } m=1,2, \ldots \text { and } j=1,2, \ldots, d
$$

In what follows the positive integer $j \leq d$ is fixed. The sequence $f \circ u_{m} \in W_{p}^{1}(\Omega)$ converges to $f \circ u$ in $L_{p}(\Omega)$. Indeed, by the mean value theorem of differential calculus

$$
\left\|f \circ u-f \circ u_{m}\right\|_{L_{p}(\Omega)}^{p} \leq \max _{\xi \in \mathbb{R}}\left|f^{\prime}(\xi)\right| \int_{\Omega}\left|u(x)-u_{m}(x)\right| d x .
$$

Convergence in $L_{p}(\Omega)$ implies convergence in $\mathscr{D}^{\prime}(\Omega)$. By Proposition 3.7 we know that

$$
\partial_{j}\left(f \circ u_{m}\right) \longrightarrow \partial_{j}(f \circ u) \quad \text { in } \mathscr{D}^{\prime}(\Omega) .
$$

Furthermore, we know that $f^{\prime}(u) \partial_{j} u \in L_{p}(\Omega)$ since $f^{\prime}(u) \in L_{\infty}(\Omega)$. Using the triangle inequality in $L_{p}(\Omega)$ we obtain

$$
\begin{aligned}
& \left(\int_{\Omega}\left|f^{\prime}\left(u_{m}\right) \partial_{j} u_{m}-f^{\prime}(u) \partial_{j} u\right|^{p} d x\right)^{1 / p} \\
& =\left(\int_{\Omega}\left|f^{\prime}\left(u_{m}\right) \partial_{j}\left(u_{m}-u\right)+\left(f^{\prime}\left(u_{m}\right)-f^{\prime}(u)\right) \partial_{j} u\right|^{p} d x\right)^{1 / p} \\
& \quad \leq\left(\int_{\Omega}\left|f^{\prime}\left(u_{m}\right) \partial_{j}\left(u_{m}-u\right)\right|^{p} d x\right)^{1 / p}+\left(\int_{\Omega}\left|\left(f^{\prime}\left(u_{m}\right)-f^{\prime}(u)\right) \partial_{j} u\right|^{p} d x\right)^{1 / p} \\
& \quad \leq\left\|f^{\prime}\left(u_{m}\right)\right\|_{L_{\infty}(\Omega)}\left\|u_{m}-u\right\|_{W_{p}^{1}(\Omega)}+\left(\int_{\Omega}\left|\left(f^{\prime}\left(u_{m}\right)-f^{\prime}(u)\right) \partial_{j} u\right|^{p} d x\right)^{1 / p} \longrightarrow 0
\end{aligned}
$$

as $m \rightarrow \infty$ where the continuity of f^{\prime} and the Lebesgue dominated convergence theorem has been used. Here the observation that the continuity of f^{\prime} implies that $f^{\prime}\left(u_{m}\right) \rightarrow f^{\prime}(u)$ almost everywhere in Ω is crucial. This shows that

$$
f^{\prime}\left(u_{m}\right) \partial_{j} u_{m} \longrightarrow f^{\prime}(u) \partial_{j} u \quad \text { in } L_{p}(\Omega)
$$

and by the uniqueness of the limit on obtains

$$
f^{\prime}(u) \partial_{j} u=\partial_{j}(f \circ u) \in L_{p}(\Omega) .
$$

If $u \in W_{\infty}^{1}(\Omega)$, then there does not need to exist a sequence of smooth functions converging to u in $W_{\infty}^{1}(\Omega)$. However, since Ω is bounded, we know that $u \in W_{p}^{1}(\Omega)$ for any $p \in[1, \infty)$ and we can use the statement proved above to state that $\partial_{j}(f \circ u)=f^{\prime}(u) \partial_{j} u$ in $L_{p}(\Omega)$. However, the right-hand side is also in $L_{\infty}(\Omega)$ and that shows that the chain rule holds also for for compositions $f \circ u$ with $f \in C^{1}(\mathbb{R}) \cap W_{\infty}^{1}(\mathbb{R})$ and $u \in W_{\infty}^{1}(\Omega)$.

An interesting application of this chain rule pertains to problem 4.1 and results in a proof of the divergence theorem for bounded regions whose boundary is locally the graph of a Lipschitz function.

