SOMMERSEMESTER 2016 - HOHERE ANALYSIS II
LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #6 Solutions

Problem 1. Consider the Neumann problem for the Laplace operator in a bounded do-
main of class C''. Define the Green function N(z,y) (also sometimes called the Neumann
function) and give a formal solution formula for Neumann problem

—Au = f S LQ(Q) s
o,u o g € Ly(092) .

If U(x) is a fundamental solution for the Laplace operator, and u € C2(f2), then according
to Proposition 4.5 we have with G(z,y) = ¥(z — y) that

ulz) = — / G, y) Auly) dy — / Oy Gla)uty) (o) + / Gl )dgul) dS(o)

In the case of the Neumann problem we do not have any information about the function
u on the boundary whereas Au in €2 and v - Vu on 02 are know. Hence, the Neumann
function N(z,y) is a fundamental solution which satisfies the condition that

v(y) - VyN(z,y) =0 for all z € Q,y € 002 .

Note that if this condition is satisfies, the formula above reads as

u(e) = — / N(e.y) i) dy+ | N(x.y)gly) dS(y) .
Q o0

Construction of the Neumann function. Let ® be the fundamental solution introduced
in Definition 4.1. Suppose that the function H(z,y) satisfies the following Neumann
boundary value problem

AyH(z,y) =0 for all x,y € Q,
OvpyH(z,y) = =0, @(r —y) forallyec o,z e.
Then the Neumann function is given by N(z,y) = ®(z — y) + H(zx,y).

Problem 2. Derive the Green function G(z, y) for the Dirichlet problem for the Laplacian
in the ball B(0) (R > 0 fixed) in the case d > 3 and derive a formula for the solution of
the Dirichlet problem

—Au =01in Bg(0) wu=g¢€ C(0Bg(0)) .
State a Theorem similar to Theorem 4.8 and prove it. Hint: For z # 0 set
1
d(d — 2)wd

and choose a € R and b > R/|z| such that G(x,y) = 0 for all 0 # z € Bg(0) and
Y € GBR(O)

G(z,y) = |z — y[* = albz — y[>~]
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Solution. Note that for x € B, (0) the function G(z,y) satisfies —A,G(x,y) = J, as long
as bx ¢ Bgr(0). Fix « € Bg(0) \ {0}. Then G(x,y) = 0 holds if for all |y| = R

a¥ D[22 — 202 -y + R?) = |z|* — 22 -y + R?.
Choose now a>~#/2 = b. Then the equation is true if and only if
V0w + R2 =b(|z)* + R*) or b(b—1)|z|*=(b—1)R?*.

Hence, b = R?/|z|* and the Green function for the ball is

1 i - m 2—d R2 2—d
I _ PR N A
_ 1 _ 2-d R |z] 2
= dd—2w, |F Y '|x|”’" R
1

R [l =y~ = (R? = 2z -y + | Py|?/ R?)*~7] |

which is well-defined also for = = 0.
Compute now, for z € Bg(0) and |y| = R, using the formula for the gradient of the
fundamental solution given before Theorem 4.2,

[y ey oy (el B/l —y
NG = G | R R(R (B[l =yl

1 [y-a—R |z RPz-y— Ra)?

dwg [ Rlz —y|* R4 |RPx —ylaf?|?

1 [yo—R lz-y—|of] 1 [g-R?
dog [ Rlz —yl? R [z —y|

 dwgR |z — y|?

Theorem. Suppose that g € C(0Bg(0)). Then the function

(0) |z — y|4

has the reqularity u € C*°(Bgr(0)) N Ly (Br(0)), satisfies the equation —Au = 0 in Bgr(0),
and u(x) = g(z) for all x € OBR(0) in the sense that for all x € 0BR(0)

lim w(a) = g(z)

T —T
for all sequences {x;} C Br(0) converging to x € 0Br(0).

Proof. For all € Bg(0) one verifies that J;u(z) can be computed by the differentiation
into the integral which can be done since x # y. This can be done for all derivatives of
higher order as well and gives u € C*°(Bg(0)). Next compute for x € Bg(0) and |y| = R,
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using the quotient rule of differential calculus,
| ZL’|2 o R2 B

2 — R o 2zlr —y|?—d(ja]? - B?)|r —y|" (@ —y)

By gd =V Ve g =V P—E
2 (P R —y)
Clr =yt T |z — y|@+?
2d 2d(|z]? —x-y) 2dx-(x—y)— d(|z]*> — R?) d(d+ 2)(|z]* — R?)
Tyl jp—y [ — T g
2 —yP Al —ay) = 2d(P = R _2dllyP - B
|ZL‘—y|d+2 |x—y|d+2 |x—y|d+2 :

This shows that —Au = 0, pointwise in Bg(0). Next we will show that u € Lo (Q2). For
that purpose set

1 Rz

 dwgR |z — gy

and observe that for K > 0 for x € Bg(0). Then, choosing g = 1 and using Proposition
4.5 with Q = Bg(0) we obtain

K(z,y)

[ Kaise) =1
9BRr(0)
From here the proof is completed as the proof of Theorem 4.7. 0]

A perhaps simpler way of proving A, K(z,y) = 0 for x € Bg(0) and |y| = R is based

on the fact that G(x,y) = G(y,x) whenever x # y and that K(z,y) = 0,,)G(x,y) for
Y € 8BR(O)
Problem 3. The chain rule for Sobolev functions. Suppose that f € C'(R) N WL (R)
and let u € W}(Q) for some p € [1,00) where Q C R is open and bounded. Prove that
foue W (Q)and 0;(fou) = f'(u)d;ju in L,(Q) for j = 1,..,d. Does this chain rule also
hold in the case that p = o0 ?

Proof. Fix p € [1,00). Note that fou € L,(f2) since fou € L, (£2) and €2 is bounded. By
Theorem 3.13 there exists a sequence u,, € C*(2) MW, () such that [|u, —ul|wi@) — 0
as m — o0o. Note that this convergence implies that u,, — u almost everywhere. The
chain rule is true for differentiable functions, hence we have

i(fou) = f'(tm)0jun form=1,2,...and j =1,2,....d .

In what follows the positive integer 7 < d is fixed. The sequence fou,, € Wpl(Q) converges
to fowin L,(f2). Indeed, by the mean value theorem of differential calculus

I 0= o tnlf o) < max £ | fule) = (o)l do

Convergence in L,(€2) implies convergence in 2'(2). By Proposition 3.7 we know that

0j(fouy) — 0;(fou) in2'(Q).



Furthermore, we know that f'(u)0;u € L,(Q2) since f'(u) € Loo(£2). Using the triangle
inequality in L,(2) we obtain

1/p
([ 7y — oy s
Q

1/p

- (/ [ m) Bt = )+ (1 () = () O] m)
= (/Q 1"t )5t = ) das) " ( L1 ) = £ )2yl dm) "

1/p
< 1 ) o et = lly o)+ ( 1 ) = £ )05l dx) 50

as m — oo where the continuity of f’ and the Lebesgue dominated convergence theorem
has been used. Here the observation that the continuity of f” implies that f'(u,,) — f'(u)
almost everywhere in 2 is crucial. This shows that

F(tm) 05t — f'(u)ju in L, ($2)
and by the uniqueness of the limit on obtains
f'(w)dju = 0;(f ou) € Ly(Q) .
O

If u € WL(Q), then there does not need to exist a sequence of smooth functions
converging to u in W (€2). However, since 2 is bounded, we know that u € W (Q) for any
p € [1,00) and we can use the statement proved above to state that 0;(f ou) = f'(u)0;u
in L,(€2). However, the right-hand side is also in L. (£2) and that shows that the chain
rule holds also for for compositions f ou with f € C*(R) N WL (R) and u € WL ().

An interesting application of this chain rule pertains to problem 4.1 and results in a
proof of the divergence theorem for bounded regions whose boundary is locally the graph
of a Lipschitz function.



