
SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II
LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #6 Solutions

Problem 1. Consider the Neumann problem for the Laplace operator in a bounded do-
main of class C1. Define the Green function N(x, y) (also sometimes called the Neumann
function) and give a formal solution formula for Neumann problem

−∆u = f ∈ L2(Ω) ,

∂νu
∣∣∣
∂Ω

= g ∈ L2(∂Ω) .

If Ψ(x) is a fundamental solution for the Laplace operator, and u ∈ C2(Ω), then according
to Proposition 4.5 we have with G(x, y) = Ψ(x− y) that

u(x) = −
∫

Ω

G(x, y)∆u(y) dy −
∫
∂Ω

∂ν(y)G(x, y)u(y) dS(y) +

∫
∂Ω

G(x, y)∂ν(y)u(y) dS(y) .

In the case of the Neumann problem we do not have any information about the function
u on the boundary whereas ∆u in Ω and ν · ∇u on ∂Ω are know. Hence, the Neumann
function N(x, y) is a fundamental solution which satisfies the condition that

ν(y) · ∇yN(x, y) = 0 for all x ∈ Ω, y ∈ ∂Ω .

Note that if this condition is satisfies, the formula above reads as

u(x) = −
∫

Ω

N(x, y)f(y) dy +

∫
∂Ω

N(x, y)g(y) dS(y) .

Construction of the Neumann function. Let Φ be the fundamental solution introduced
in Definition 4.1. Suppose that the function H(x, y) satisfies the following Neumann
boundary value problem

∆yH(x, y) = 0 for all x, y ∈ Ω,

∂ν(y)H(x, y) = −∂ν(y)Φ(x− y) for all y ∈ ∂Ω, x ∈ Ω .

Then the Neumann function is given by N(x, y) = Φ(x− y) +H(x, y).

Problem 2. Derive the Green function G(x, y) for the Dirichlet problem for the Laplacian
in the ball BR(0) (R > 0 fixed) in the case d ≥ 3 and derive a formula for the solution of
the Dirichlet problem

−∆u = 0 in BR(0) u = g ∈ C(∂BR(0)) .

State a Theorem similar to Theorem 4.8 and prove it. Hint: For x 6= 0 set

G(x, y) =
1

d(d− 2)ωd

[
|x− y|2−d − a|bx− y|2−d

]
and choose a ∈ R and b > R/|x| such that G(x, y) = 0 for all 0 6= x ∈ BR(0) and
y ∈ ∂BR(0).
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Solution. Note that for x ∈ Br(0) the function G(x, y) satisfies −∆yG(x, y) = δx as long
as bx /∈ BR(0). Fix x ∈ BR(0) \ {0}. Then G(x, y) = 0 holds if for all |y| = R

a2/(2−d)[b2|x|2 − 2bx · y +R2] = |x|2 − 2x · y +R2 .

Choose now a(2−d)/2 = b. Then the equation is true if and only if

b2|x|2 +R2 = b(|x|2 +R2) or b(b− 1)|x|2 = (b− 1)R2 .

Hence, b = R2/|x|2 and the Green function for the ball is

G(x, y) =
1

d(d− 2)ωd

[
|x− y|2−d −

(
|x|
R

)2−d ∣∣∣∣ R2

|x|2
x− y

∣∣∣∣2−d
]

=
1

d(d− 2)ωd

[
|x− y|2−d −

∣∣∣∣ R|x|x− |x|R y

∣∣∣∣2−d
]

=
1

d(d− 2)ωd

[
|x− y|2−d − (R2 − 2x · y + |x|2|y|2/R2)2−d] ,

which is well-defined also for x = 0.
Compute now, for x ∈ BR(0) and |y| = R, using the formula for the gradient of the

fundamental solution given before Theorem 4.2,

ν(y) · ∇yG(x, y) =
1

dωd

[
y

R

x− y
|x− y|d

− y

R

(
|x|
R

)2−d
R2x/|x|2 − y
|R2x/|x|2 − y|d

]

=
1

dωd

[
y · x−R2

R|x− y|d
− |x|

d

R3−d
R2x · y −R2|x|2

|R2x− y|x|2|d

]
=

1

dωd

[
y · x−R2

R|x− y|d
− 1

R

x · y − |x|2

|x− y|d

]
=

1

dωdR

|x|2 −R2

|x− y|d

Theorem. Suppose that g ∈ C(∂BR(0)). Then the function

u(x) =
R2 − |x|2

dωdR

∫
∂BR(0)

g(y)

|x− y|d
dS(y)

has the regularity u ∈ C∞(BR(0))∩L∞(BR(0)), satisfies the equation −∆u = 0 in BR(0),
and u(x) = g(x) for all x ∈ ∂BR(0) in the sense that for all x ∈ ∂BR(0)

lim
xl→x

u(xl) = g(x)

for all sequences {xl} ⊂ BR(0) converging to x ∈ ∂BR(0).

Proof. For all x ∈ BR(0) one verifies that ∂ju(x) can be computed by the differentiation
into the integral which can be done since x 6= y. This can be done for all derivatives of
higher order as well and gives u ∈ C∞(BR(0)). Next compute for x ∈ BR(0) and |y| = R,
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using the quotient rule of differential calculus,

∆x
|x|2 −R2

|x− y|d
= ∇x · ∇x

|x|2 −R2

|x− y|d
= ∇x ·

2x|x− y|d − d(|x|2 −R2)|x− y|d−2(x− y)

|x− y|2d

= ∇x ·
2x

|x− y|d
−∇x ·

d(|x|2 −R2)(x− y)

|x− y|d+2

=
2d

|x− y|d
− 2d(|x|2 − x · y)

|x− y|d+2
− 2dx · (x− y)− d2(|x|2 −R2)

|x− y|d+2
+
d(d+ 2)(|x|2 −R2)

|x− y|d+2

=
2d(x− y)2

|x− y|d+2
− 4d[|x|2 − x · y]− 2d(|x|2 −R2)

|x− y|d+2
=

2d[|y|2 −R2]

|x− y|d+2
= 0 .

This shows that −∆u = 0, pointwise in BR(0). Next we will show that u ∈ L∞(Ω). For
that purpose set

K(x, y) =
1

dωdR

R2 − |x|2

|x− y|d

and observe that for K > 0 for x ∈ BR(0). Then, choosing g ≡ 1 and using Proposition
4.5 with Ω = BR(0) we obtain ∫

∂BR(0)

K(x, y)dS(y) = 1

From here the proof is completed as the proof of Theorem 4.7. �

A perhaps simpler way of proving ∆xK(x, y) = 0 for x ∈ BR(0) and |y| = R is based
on the fact that G(x, y) = G(y, x) whenever x 6= y and that K(x, y) = ∂ν(y)G(x, y) for
y ∈ ∂BR(0).

Problem 3. The chain rule for Sobolev functions. Suppose that f ∈ C1(R) ∩W 1
∞(R)

and let u ∈ W 1
p (Ω) for some p ∈ [1,∞) where Ω ⊂ Rd is open and bounded. Prove that

f ◦ u ∈ W 1
p (Ω) and ∂j(f ◦ u) = f ′(u)∂ju in Lp(Ω) for j = 1, .., d. Does this chain rule also

hold in the case that p =∞ ?

Proof. Fix p ∈ [1,∞). Note that f ◦u ∈ Lp(Ω) since f ◦u ∈ L∞(Ω) and Ω is bounded. By
Theorem 3.13 there exists a sequence um ∈ C∞(Ω)∩W 1

p (Ω) such that ‖um−u‖W 1
p (Ω) → 0

as m → ∞. Note that this convergence implies that un → u almost everywhere. The
chain rule is true for differentiable functions, hence we have

∂j(f ◦ u) = f ′(um)∂jum for m = 1, 2, ... and j = 1, 2, ..., d .

In what follows the positive integer j ≤ d is fixed. The sequence f ◦um ∈ W 1
p (Ω) converges

to f ◦ u in Lp(Ω). Indeed, by the mean value theorem of differential calculus

‖f ◦ u− f ◦ um‖pLp(Ω) ≤ max
ξ∈R
|f ′(ξ)|

∫
Ω

|u(x)− um(x)| dx .

Convergence in Lp(Ω) implies convergence in D ′(Ω). By Proposition 3.7 we know that

∂j(f ◦ um) −→ ∂j(f ◦ u) in D ′(Ω) .



Furthermore, we know that f ′(u)∂ju ∈ Lp(Ω) since f ′(u) ∈ L∞(Ω). Using the triangle
inequality in Lp(Ω) we obtain(∫

Ω

|f ′(um)∂jum − f ′(u)∂ju|p dx
)1/p

=

(∫
Ω

∣∣f ′(um)∂j(um − u) +
(
f ′(um)− f ′(u)

)
∂ju
∣∣p dx)1/p

≤
(∫

Ω

|f ′(um)∂j(um − u)|p dx
)1/p

+

(∫
Ω

∣∣(f ′(um)− f ′(u)
)
∂ju
∣∣p dx)1/p

≤ ‖f ′(um)‖L∞(Ω)‖um − u‖W 1
p (Ω) +

(∫
Ω

∣∣(f ′(um)− f ′(u)
)
∂ju
∣∣p dx)1/p

−→ 0

as m→∞ where the continuity of f ′ and the Lebesgue dominated convergence theorem
has been used. Here the observation that the continuity of f ′ implies that f ′(um)→ f ′(u)
almost everywhere in Ω is crucial. This shows that

f ′(um)∂jum −→ f ′(u)∂ju in Lp(Ω)

and by the uniqueness of the limit on obtains

f ′(u)∂ju = ∂j(f ◦ u) ∈ Lp(Ω) .

�

If u ∈ W 1
∞(Ω), then there does not need to exist a sequence of smooth functions

converging to u in W 1
∞(Ω). However, since Ω is bounded, we know that u ∈ W 1

p (Ω) for any
p ∈ [1,∞) and we can use the statement proved above to state that ∂j(f ◦ u) = f ′(u)∂ju
in Lp(Ω). However, the right-hand side is also in L∞(Ω) and that shows that the chain
rule holds also for for compositions f ◦ u with f ∈ C1(R) ∩W 1

∞(R) and u ∈ W 1
∞(Ω).

An interesting application of this chain rule pertains to problem 4.1 and results in a
proof of the divergence theorem for bounded regions whose boundary is locally the graph
of a Lipschitz function.


