SOMMERSEMESTER 2016 - HOHERE ANALYSIS II
LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #8 due 06/14

Problem 1. Consider the Dirichlet problem for the Laplace equation in the unit disk,
that is

—~Au=0 in B;(0) C R?, u=yg indB(0).
Suppose that g can be expanded into a Fourier series g(¢) = Z a, cos(k¢) and look for
k=0

a solution of the form
u(r, @) = Z bi(r) cos(ko) ,
k=0

where (7, ¢) are polar coordinates.
a.) Show that the by have to satisfy the equation
/{32

1
bIkI(T’)—F;b;@(T)_ﬁbk:O forkzl,Z,... .

Solve this differential equation. Since it is of second order, there are two linearly inde-
pendent solutions. However, one has to be discarded. Why ?
Solution. Recall that the Laplacian in polar coordinates is given by

7 N 10 N 1 0?
CO0r2  ror 1209
Differentiating the series u(r, ¢) formally gives

o0

Au = Z {bg(r) + %b;(r) — ]:—Qbk(r) cos(k¢)

k=0

Since the functions cos(k¢) are an orthogonal set in Ly (0, 27), the series vanishes only if
each b, satisfies the differential equation

b, 1b’ — k—Qb =0
() + ~bi(r) = () = 0.

The general solutions of this equation are by(r) = ¢; +co logr and by (1) = c17* + cor=* for

k=1,2,.... In each case we set co = 0 and discard the unbounded solution. We obtain
(1) u(r, ¢) = Zakrk cos(ko) .
k=0

Given that the series for ¢ is convergent in the Lo-sense, that is >~ ai < oo, the series

for u(r, ¢) is absolutely convergent for all r < 1.

b.) Give a condition on the sequence {a; } which guarantees that the energy [, ©) \Vu|? dx
1
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of the series solution is finite.
Solution. Observe that
1
2 2 2
\Vu|* = [0,ul” + ﬁ|8¢u\ )

Hence, using the orthogonality of the cosine and sine functions and f027r cos?(k¢) dp =
f27r sin?(k¢) dp = m for k = 1,2, .., one obtains

0
2m 1 1
/ Vul*dr = / / [|8ru|2 + —2|8¢u|2] rdrdg
B1(0) 0 0 r
0o 1 00 1 00
= WZ aikQ/ r2 =t dr + WZG%]CZ/ r? L dr = WZ ark .
k=1 0 k=1 0 k=1

This integral is finite if the sum >, | atk < oo.
c*.) Can you find a g € C(9B4(0)) such that the corresponding solution u does not have
finite energy 7

Problem 2. Use the series expansion derived in Problem 1 to obtain the Poisson integral
formula in d = 2. In higher dimensions this formula has been discussed in Homework 6,
Problem 2.
Solution. If

WE

9(¢) = ) aycos(ko)
k=0
then
1 27 1 2
ap = — g(0)df and ap = —/ 9(0) cos(kB) d¢ for k> 1,
2T 0 ™ Jo
and

2m
/ g(0)sin(kf) =0 for k=1,2.
0

Moving these expression into formula one gives

u(r, @) = L /027T g(0)do + % irk {Cos(kqb) /027T g(0) cos(kB) df + sin(k¢) /027r g(0) sin(k0) d@]

2w
1 2 1 00 . 2w
= — g(0)do + — 7"/ g(0) cos(k(0 — ¢)) do
g [ 900+ 230 [ ) costi
Lo L [P b ik0-0) - ik(0-0)
= 0)do + — e ~T]g(0) do
o, g(0) db + o, ;7’ e +e 19(6)
| e 1 re-i(6-0)
~ o, () {1 e re—i(e—‘b)} 40
127 pei0-9) (1 — pei0-6))ppil6—0)
_ 1 o(0) re +(1—re Jre a0
27 J, 1 —2rcos(0 — ¢) + 12
1 [% 1—1r2

A g<0)1 — 2rcos(f — ¢) + r? b



Returning to Cartesian coordinates gives

I el Y ()
u(z) = o /g|37—y|2 dS(y) .

which is the Poisson formula for the unit circle S.

Problem 3. Consider the function f(x) = X|—aq € L2(R).
a.) Compute the distributional derivative f’(x) and show that A"f — 0 almost every-

where.
Solution. Let ¢ € C§°(R). Then

d a
) == [ @) dr = o) + o)
and hence f" = 0_,+,. Note that f' = 0 almost everywhere. For all z € R\ {a, —a} we

have

flx+h) = f(z)
h
as soon as |h| < min{|z — al, |x + a|}. Hence, A"f — 0 almost everywhere.
b.) Show that the difference quotients A" f do not converge to zero in Lo(R).
Solution. Suppose that A > 0. Then

Alf(z) = =0

0 for x>a
—1/h for a—h<z<a
Ahf(ac): 0 for —a<zx<a-—nh
1/h  for —a—h<z<-a
0 for x<-—-a—~h

@1 B | 2
' 2 / /
/R| f(x)|” de N dx o dx N

which proves that A"f does not converge to zero in Ly(R). A similar computation can
be done for h < 0.

and



