SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#8 due 06/14

Problem 1. Consider the Dirichlet problem for the Laplace equation in the unit disk, that is

$$
-\Delta u=0 \quad \text { in } B_{1}(0) \subset \mathbb{R}^{2}, \quad u=g \quad \text { in } \partial B_{1}(0) .
$$

Suppose that g can be expanded into a Fourier series $g(\phi)=\sum_{k=0}^{\infty} a_{k} \cos (k \phi)$ and look for a solution of the form

$$
u(r, \phi)=\sum_{k=0}^{\infty} b_{k}(r) \cos (k \phi),
$$

where (r, ϕ) are polar coordinates.
a.) Show that the b_{k} have to satisfy the equation

$$
b_{k}^{\prime \prime}(r)+\frac{1}{r} b_{k}^{\prime}(r)-\frac{k^{2}}{r^{2}} b_{k}=0 \quad \text { for } k=1,2, \ldots
$$

Solve this differential equation. Since it is of second order, there are two linearly independent solutions. However, one has to be discarded. Why ?
Solution. Recall that the Laplacian in polar coordinates is given by

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi^{2}}
$$

Differentiating the series $u(r, \phi)$ formally gives

$$
\Delta u=\sum_{k=0}^{\infty}\left[b_{k}^{\prime \prime}(r)+\frac{1}{r} b_{k}^{\prime}(r)-\frac{k^{2}}{r^{2}} b_{k}(r)\right] \cos (k \phi)
$$

Since the functions $\cos (k \phi)$ are an orthogonal set in $L_{2}(0,2 \pi)$, the series vanishes only if each b_{k} satisfies the differential equation

$$
b_{k}^{\prime \prime}(r)+\frac{1}{r} b_{k}^{\prime}(r)-\frac{k^{2}}{r^{2}} b_{k}(r)=0 .
$$

The general solutions of this equation are $b_{0}(r)=c_{1}+c_{2} \log r$ and $b_{k}(r)=c_{1} r^{k}+c_{2} r^{-k}$ for $k=1,2, \ldots$. In each case we set $c_{2}=0$ and discard the unbounded solution. We obtain

$$
\begin{equation*}
u(r, \phi)=\sum_{k=0}^{\infty} a_{k} r^{k} \cos (k \phi) \tag{1}
\end{equation*}
$$

Given that the series for g is convergent in the L_{2}-sense, that is $\sum_{k=0}^{\infty} a_{k}^{2}<\infty$, the series for $u(r, \phi)$ is absolutely convergent for all $r<1$.
b.) Give a condition on the sequence $\left\{a_{k}\right\}$ which guarantees that the energy $\int_{B_{1}(0)}|\nabla u|^{2} d x$
of the series solution is finite.
Solution. Observe that

$$
|\nabla u|^{2}=\left|\partial_{r} u\right|^{2}+\frac{1}{r^{2}}\left|\partial_{\phi} u\right|^{2} .
$$

Hence, using the orthogonality of the cosine and sine functions and $\int_{0}^{2 \pi} \cos ^{2}(k \phi) d \phi=$ $\int_{0}^{2 \pi} \sin ^{2}(k \phi) d \phi=\pi$ for $k=1,2, .$. , one obtains

$$
\begin{aligned}
\int_{B_{1}(0)}|\nabla u|^{2} d x & =\int_{0}^{2 \pi} \int_{0}^{1}\left[\left|\partial_{r} u\right|^{2}+\frac{1}{r^{2}}\left|\partial_{\phi} u\right|^{2}\right] r d r d \phi \\
& =\pi \sum_{k=1}^{\infty} a_{k}^{2} k^{2} \int_{0}^{1} r^{2 k-1} d r+\pi \sum_{k=1}^{\infty} a_{k}^{2} k^{2} \int_{0}^{1} r^{2 k-1} d r=\pi \sum_{k=1}^{\infty} a_{k}^{2} k
\end{aligned}
$$

This integral is finite if the sum $\sum_{k=1}^{\infty} a_{k}^{2} k<\infty$.
c^{*}.) Can you find a $g \in C\left(\partial B_{1}(0)\right)$ such that the corresponding solution u does not have finite energy?
Problem 2. Use the series expansion derived in Problem 1 to obtain the Poisson integral formula in $d=2$. In higher dimensions this formula has been discussed in Homework 6, Problem 2.
Solution. If

$$
g(\phi)=\sum_{k=0}^{\infty} a_{k} \cos (k \phi)
$$

then

$$
a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\theta) d \theta \quad \text { and } \quad a_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} g(\theta) \cos (k \theta) d \phi \text { for } k \geq 1
$$

and

$$
\int_{0}^{2 \pi} g(\theta) \sin (k \theta)=0 \quad \text { for } k=1,2 .
$$

Moving these expression into formula one gives

$$
\begin{aligned}
u(r, \phi) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\theta) d \theta+\frac{1}{\pi} \sum_{k=1}^{\infty} r^{k}\left[\cos (k \phi) \int_{0}^{2 \pi} g(\theta) \cos (k \theta) d \theta+\sin (k \phi) \int_{0}^{2 \pi} g(\theta) \sin (k \theta) d \theta\right] \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\theta) d \theta+\frac{1}{\pi} \sum_{k=1}^{\infty} r^{k} \int_{0}^{2 \pi} g(\theta) \cos (k(\theta-\phi)) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\theta) d \theta+\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=1}^{\infty} r^{k}\left[e^{i k(\theta-\phi)}+e^{-i k(\theta-\phi)}\right] g(\theta) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\theta)\left[\frac{1}{1-r e^{i(\theta-\phi)}}+\frac{r e^{-i(\theta-\phi)}}{1-r e^{-i(\theta-\phi)}}\right] d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\theta) \frac{1-r e^{-i(\theta-\phi)}+\left(1-r e^{i(\theta-\phi)}\right) r e^{-i(\theta-\phi)}}{1-2 r \cos (\theta-\phi)+r^{2}} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\theta) \frac{1-r^{2}}{1-2 r \cos (\theta-\phi)+r^{2}} d \theta
\end{aligned}
$$

Returning to Cartesian coordinates gives

$$
u(x)=\frac{1-|x|^{2}}{2 \pi} \int_{S} \frac{g(y)}{|x-y|^{2}} d S(y)
$$

which is the Poisson formula for the unit circle S.
Problem 3. Consider the function $f(x)=\chi_{[-a, a]} \in L_{2}(\mathbb{R})$.
a.) Compute the distributional derivative $f^{\prime}(x)$ and show that $\Delta^{h} f \rightarrow 0$ almost everywhere.
Solution. Let $\varphi \in C_{0}^{\infty}(\mathbb{R})$. Then

$$
\frac{d}{d x} f(\varphi)=-\int_{a}^{a} \varphi^{\prime}(x) d x=-\varphi(a)+\varphi(-a)
$$

and hence $f^{\prime}=\delta_{-a}+\delta_{a}$. Note that $f^{\prime}=0$ almost everywhere. For all $x \in \mathbb{R} \backslash\{a,-a\}$ we have

$$
\Delta^{h} f(x)=\frac{f(x+h)-f(x)}{h}=0
$$

as soon as $|h|<\min \{|x-a|,|x+a|\}$. Hence, $\Delta^{h} f \rightarrow 0$ almost everywhere.
b.) Show that the difference quotients $\Delta^{h} f$ do not converge to zero in $L_{2}(\mathbb{R})$.

Solution. Suppose that $h>0$. Then

$$
\Delta^{h} f(x)=\left\{\begin{array}{cll}
0 & \text { for } & x>a \\
-1 / h & \text { for } & a-h<x \leq a \\
0 & \text { for } & -a \leq x \leq a-h \\
1 / h & \text { for } & -a-h \leq x<-a \\
0 & \text { for } & x<-a-h
\end{array}\right.
$$

and

$$
\int_{\mathbb{R}}\left|\Delta^{h} f(x)\right|^{2} d x=\int_{a-h}^{a} \frac{1}{h^{2}} d x+\int_{-a-h}^{-a} \frac{1}{h^{2}} d x=\frac{2}{h}
$$

which proves that $\Delta^{h} f$ does not converge to zero in $L_{2}(\mathbb{R})$. A similar computation can be done for $h<0$.

