SOMMERSEMESTER 2016 - HOHERE ANALYSIS II
LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #9 due 06/21

Problem 1. Suppose that 2 C R? is open and bounded. Use the Gagliardo-Nirenberg-
Sobolev inequality (Theorem 6.3) to make the constant in the Poincaré inequality (The-
orem 5.1) explicit. The constant does depend on d, p and |].

Problem 2. Suppose that 2 C R? is a bounded region of class C? and let f € Ly(9). A
function u € H*(Q) is a weak solution to the Dirichlet problem for the bi-Laplacian
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if for all v € H2(Q) is identity
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holds. Prove that for each f € Ly(2) there exists a weak solution to the Dirichlet problem
for the bi-Laplacian.

Problem 3. Recall that the Fourier transform .# extends to a unitary operator on
Ly(RY), that is #'F = F.F' = I. Here,
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where f,g € .7(R%). Prove that u € H*(R?) if and only if
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