SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#9 due 06/21

Problem 1. Suppose that $\Omega \subset \mathbb{R}^{d}$ is open and bounded. Use the Gagliardo-NirenbergSobolev inequality (Theorem 6.3) to make the constant in the Poincaré inequality (Theorem 5.1) explicit. The constant does depend on d, p and $|\Omega|$.
Problem 2. Suppose that $\Omega \subset \mathbb{R}^{d}$ is a bounded region of class C^{2} and let $f \in L_{2}(\Omega)$. A function $u \in \stackrel{H}{H}^{2}(\Omega)$ is a weak solution to the Dirichlet problem for the bi-Laplacian

$$
\Delta^{2} u=f \text { in } \Omega, \quad u=\partial_{\nu} u=0 \text { on } \partial \Omega
$$

if for all $v \in \dot{H}^{2}(\Omega)$ is identity

$$
\int_{\Omega} \Delta u \Delta v d x=\int_{\Omega} f v d x
$$

holds. Prove that for each $f \in L_{2}(\Omega)$ there exists a weak solution to the Dirichlet problem for the bi-Laplacian.
Problem 3. Recall that the Fourier transform \mathscr{F} extends to a unitary operator on $L_{2}\left(\mathbb{R}^{d}\right)$, that is $\mathscr{F}^{\prime} \mathscr{F}=\mathscr{F} \mathscr{F}^{\prime}=I$. Here,

$$
\mathscr{F}[f(x)](\xi)=\hat{f}(\xi)=\int_{\mathbb{R}^{d}} e^{-i x \cdot \xi} f(x) d x \quad \text { and } \quad \mathscr{F}^{\prime}[g(\xi)](x)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{i x \cdot \xi} g(\xi) d \xi
$$

where $f, g \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. Prove that $u \in H^{k}\left(\mathbb{R}^{d}\right)$ if and only if

$$
\int_{\mathbb{R}^{d}}\left(1+|\xi|^{2}\right)^{k}|\hat{u}(\xi)|^{2} d \xi<\infty
$$

