
SOMMERSEMESTER 2016 - HÖHERE ANALYSIS II
LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #9 due 06/21

Problem 1. Suppose that Ω ⊂ Rd is open and bounded, d ≥ 2. Use the Gagliardo-
Nirenberg-Sobolev inequality (Theorem 6.3) to make the constant in the Poincaré in-
equality (Theorem 5.1) explicit. The constant does depend on d, p and |Ω|.

First solution in the case p ∈ [1, d). Using the definition of W̊ 1
p (Ω) it will suffice to work

with smooth, compactly supported functions. Recall the Gagliardo-Nirenberg-Sobolev
inequality,

(1) ‖u‖Ldp/(d−p)(Ω) ≤
(d− 1)p

(d− p)
√
d
‖∇u‖Lp(Ω) for 1 ≤ p < d .

For p < d observe that by Hölder’s inequality

(2) ‖u‖Lp(Ω) ≤
(∫
|u|dp/(d−p)

)(d−p)/(dp)(∫
Ω

dx

)1/d

= |Ω|1/d‖u‖Ldp/(d−p)(Ω) ,

since
d− p
d

+
p

d
= 1 .

Combining the two inequalities gives

‖u‖Lp(Ω) ≤ |Ω|1/d
(d− 1)p

(d− p)
√
d
‖∇u‖Lp(Ω) , for 1 ≤ p < d .

Second solution for the case p ∈ [d/(d− 1),∞). Given p ∈ [1,∞), choose q such that

p =
dq

d− q
that is q =

pd

d+ p
.

Observe that 1 ≤ q < d; hence, the Gagliardo-Nirenberg-Sobolev inequality (1) is appli-
cable with p replaced by q and gives

‖u‖Lp(Ω) ≤
(d− 1)q

(d− q)
√
d
‖∇u‖Lq(Ω) .

Using Hölder’s inequality as in (2) gives

‖∇u‖Lq(Ω) ≤ ‖∇u‖Lp(Ω)|Ω|1/d

and combining the last two inequalities gives

‖u‖Lp(Ω) ≤
(d− 1)q

(d− q)
√
d
|Ω|1/d‖∇u‖Lp(Ω) = |Ω|1/dp(d− 1)

d
√
d
‖∇u‖Lp(Ω) ,

since
(d− 1)q

d− q
=

dq

d− q
− q

d− q
= p− p

d
=
p(d− 1)

d
.
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Problem 2. Suppose that Ω ⊂ Rd is a bounded region of class C2 and let f ∈ L2(Ω). A

function u ∈ H̊2(Ω) is a weak solution to the Dirichlet problem for the bi-Laplacian

∆2u = f in Ω , u = ∂νu = 0 on ∂Ω ,

if for all v ∈ H̊2(Ω) is identity ∫
Ω

∆u∆v dx =

∫
Ω

fv dx

holds. Prove that for each f ∈ L2(Ω) there exists a weak solution to the Dirichlet problem
for the bi-Laplacian.

Proof. We will apply the Lax-Milgram Lemma (Theorem 5.11) to the bilinear form

a(u, v) =

∫
Ω

∆u∆v dx

on H = H̊2(Ω). Using the Cauchy-Schwarz inequality one obtains the estimate

|a(u, v)| ≤ ‖∆u‖L2(Ω)‖∆v‖L2(Ω) , for all u, v ∈ H̊2(Ω) .

Furthermore,

a(u, u) = ‖∆u‖2
L2(Ω) , for all u ∈ H̊2(Ω) .

In order to use these estimates for the required continuity and coercivity of a on H̊2(Ω)
we will introduce an equivalent norm on this Sobolev space. For that purpose we will use
Theorem 5.18 which implies in our case (L = −∆, g = 0), that

(3) ‖u‖H2(Ω) ≤ C
{
‖u‖L2(Ω) + ‖∆u‖L2(Ω)

}
for all u ∈ H̊2(Ω) .

We will show that this estimate can be improved to

(4) ‖u‖H2(Ω) ≤ C‖∆u‖L2(Ω) for all u ∈ H̊2(Ω) .

In other words, the expression ‖∆u‖L2(Ω) is an equivalent norm on H̊2(Ω). Assuming the
validity of (4) gives the continuity and coercivity of the bilinear form a. Applying the
Lax-Milgram lemma gives a unique solution to the variational equation a(u, v) = 〈f, v〉
for every f ∈ H−2(Ω) which is the dual of H̊2(Ω). Of course, every f ∈ L2(Ω) is also a

linear functional on H̊2(Ω) via the formula

〈f, v〉 =

∫
Ω

fv dx for all v ∈ H̊2(Ω) .

It remains to prove (4). We argue by contradiction. If (4) is not correct, then there exists

a sequence un ∈ H̊2(Ω) such that

1 = ‖un‖H2(Ω) > n‖∆un‖L2(Ω) n = 1, 2, ...

A bounded sequence in H2(Ω) is also bounded in H1(Ω). Using the Rellich selection theo-
rem (Corollary 6.8) provides a strongly converging subsequence (for convenience denoted
again by un) in L2(Ω), that is ‖u − un‖L2(Ω) → 0 as n → ∞. Applying estimate (3) to
the difference un−um shows that un is Cauchy in H2(Ω) and hence, by the uniqueness of

the limit one infers that u ∈ H̊2(Ω). Because of ∆un → 0 in L2(Ω) one knows also that
∆u = 0. Using the maximum principle (Corollary 6.6) gives u = 0. However, this is a
contradiction to ‖un‖H2(Ω) = 1 for all n. �



Problem 3. Recall that the Fourier transform F extends to a unitary operator on
L2(Rd), that is F ′F = FF ′ = I. Here,

F [f(x)](ξ) = f̂(ξ) =

∫
Rd

e−ix·ξf(x) dx and F ′[g(ξ)](x) =
1

(2π)d

∫
Rd

eix·ξg(ξ) dξ ,

where f, g ∈ S (Rd). Prove that u ∈ Hk(Rd) if and only if∫
Rd

(1 + |ξ|2)k|û(ξ)|2 dξ <∞ .

Proof. Suppose that u ∈ Hk(Rd). Then ∂αu ∈ L2(Rd) for |α| ≤ k if and only if ∂̂αu =
(iξ)αû(ξ). Hence, we conclude that u ∈ Hk(Rd) implies because of Parseval’s identity
that ∫

Rd

|ξ2α||û(ξ)|2 dξ <∞ for all |α| ≤ k .

Using the multinomial theorem, in particular the formula,

(1 + |ξ|2)k =
∑
|α|=k

k!ξ2α

α!
,

one can show that there exist constants C1, C2 > 0 such that∑
|α|≤k

|ξ2α| ≤ C(1 + |ξ|2)k ≤ C2

∑
|α|≤k

|ξ2α| .

The first inequality shows the implication u ∈ Hk(Rd) implies
∫
Rd(1+|ξ|2)k|û(ξ)|2 dξ <∞,

the second inequality the opposite direction.
�


