SOMMERSEMESTER 2016-HÖHERE ANALYSIS II LINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#9 due 06/21

Problem 1. Suppose that $\Omega \subset \mathbb{R}^{d}$ is open and bounded, $d \geq 2$. Use the Gagliardo-Nirenberg-Sobolev inequality (Theorem 6.3) to make the constant in the Poincaré inequality (Theorem 5.1) explicit. The constant does depend on d, p and $|\Omega|$.
First solution in the case $p \in[1, d)$. Using the definition of $\mathscr{W}_{p}^{1}(\Omega)$ it will suffice to work with smooth, compactly supported functions. Recall the Gagliardo-Nirenberg-Sobolev inequality,

$$
\begin{equation*}
\|u\|_{L_{d p /(d-p)}(\Omega)} \leq \frac{(d-1) p}{(d-p) \sqrt{d}}\|\nabla u\|_{L_{p}(\Omega)} \quad \text { for } 1 \leq p<d \tag{1}
\end{equation*}
$$

For $p<d$ observe that by Hölder's inequality

$$
\begin{equation*}
\|u\|_{L_{p}(\Omega)} \leq\left(\int|u|^{d p /(d-p)}\right)^{(d-p) /(d p)}\left(\int_{\Omega} d x\right)^{1 / d}=|\Omega|^{1 / d}\|u\|_{L_{d p /(d-p)}(\Omega)} \tag{2}
\end{equation*}
$$

since

$$
\frac{d-p}{d}+\frac{p}{d}=1 .
$$

Combining the two inequalities gives

$$
\|u\|_{L_{p}(\Omega)} \leq|\Omega|^{1 / d} \frac{(d-1) p}{(d-p) \sqrt{d}}\|\nabla u\|_{L_{p}(\Omega)}, \quad \text { for } 1 \leq p<d
$$

Second solution for the case $p \in[d /(d-1), \infty)$. Given $p \in[1, \infty)$, choose q such that

$$
p=\frac{d q}{d-q} \quad \text { that is } \quad q=\frac{p d}{d+p} .
$$

Observe that $1 \leq q<d$; hence, the Gagliardo-Nirenberg-Sobolev inequality (1) is applicable with p replaced by q and gives

$$
\|u\|_{L_{p}(\Omega)} \leq \frac{(d-1) q}{(d-q) \sqrt{d}}\|\nabla u\|_{L_{q}(\Omega)} .
$$

Using Hölder's inequality as in (2) gives

$$
\|\nabla u\|_{L_{q}(\Omega)} \leq\|\nabla u\|_{L_{p}(\Omega)}|\Omega|^{1 / d}
$$

and combining the last two inequalities gives

$$
\|u\|_{L_{p}(\Omega)} \leq \frac{(d-1) q}{(d-q) \sqrt{d}}|\Omega|^{1 / d}\|\nabla u\|_{L_{p}(\Omega)}=|\Omega|^{1 / d} \frac{p(d-1)}{d \sqrt{d}}\|\nabla u\|_{L_{p}(\Omega)}
$$

since

$$
\frac{(d-1) q}{d-q}=\frac{d q}{d-q}-\frac{q}{d-q}=p-\frac{p}{d}=\frac{p(d-1)}{d} .
$$

Problem 2. Suppose that $\Omega \subset \mathbb{R}^{d}$ is a bounded region of class C^{2} and let $f \in L_{2}(\Omega)$. A function $u \in \dot{H}^{2}(\Omega)$ is a weak solution to the Dirichlet problem for the bi-Laplacian

$$
\Delta^{2} u=f \text { in } \Omega, \quad u=\partial_{\nu} u=0 \text { on } \partial \Omega,
$$

if for all $v \in \dot{H}^{2}(\Omega)$ is identity

$$
\int_{\Omega} \Delta u \Delta v d x=\int_{\Omega} f v d x
$$

holds. Prove that for each $f \in L_{2}(\Omega)$ there exists a weak solution to the Dirichlet problem for the bi-Laplacian.

Proof. We will apply the Lax-Milgram Lemma (Theorem 5.11) to the bilinear form

$$
a(u, v)=\int_{\Omega} \Delta u \Delta v d x
$$

on $H=\stackrel{\circ}{H}^{2}(\Omega)$. Using the Cauchy-Schwarz inequality one obtains the estimate

$$
|a(u, v)| \leq\|\Delta u\|_{L_{2}(\Omega)}\|\Delta v\|_{L_{2}(\Omega)}, \quad \text { for all } u, v \in \stackrel{\circ}{H}^{2}(\Omega)
$$

Furthermore,

$$
a(u, u)=\|\Delta u\|_{L_{2}(\Omega)}^{2}, \quad \text { for all } u \in \stackrel{\circ}{H}^{2}(\Omega)
$$

In order to use these estimates for the required continuity and coercivity of a on $\dot{H}^{2}(\Omega)$ we will introduce an equivalent norm on this Sobolev space. For that purpose we will use Theorem 5.18 which implies in our case ($L=-\Delta, g=0$), that

$$
\begin{equation*}
\|u\|_{H^{2}(\Omega)} \leq C\left\{\|u\|_{L_{2}(\Omega)}+\|\Delta u\|_{L_{2}(\Omega)}\right\} \quad \text { for all } u \in \stackrel{\circ}{H}^{2}(\Omega) \tag{3}
\end{equation*}
$$

We will show that this estimate can be improved to

$$
\begin{equation*}
\|u\|_{H^{2}(\Omega)} \leq C\|\Delta u\|_{L_{2}(\Omega)} \quad \text { for all } u \in \grave{H}^{2}(\Omega) \tag{4}
\end{equation*}
$$

In other words, the expression $\|\Delta u\|_{L_{2}(\Omega)}$ is an equivalent norm on ${ }_{H}{ }^{2}(\Omega)$. Assuming the validity of (4) gives the continuity and coercivity of the bilinear form a. Applying the Lax-Milgram lemma gives a unique solution to the variational equation $a(u, v)=\langle f, v\rangle$ for every $f \in H^{-2}(\Omega)$ which is the dual of $H^{2}(\Omega)$. Of course, every $f \in L_{2}(\Omega)$ is also a linear functional on $\stackrel{\circ}{H}^{2}(\Omega)$ via the formula

$$
\langle f, v\rangle=\int_{\Omega} f v d x \quad \text { for all } v \in \stackrel{\circ}{H}^{2}(\Omega) .
$$

It remains to prove (4). We argue by contradiction. If (4) is not correct, then there exists a sequence $u_{n} \in \stackrel{\circ}{H}^{2}(\Omega)$ such that

$$
1=\left\|u_{n}\right\|_{H^{2}(\Omega)}>n\left\|\Delta u_{n}\right\|_{L_{2}(\Omega)} \quad n=1,2, \ldots
$$

A bounded sequence in $H^{2}(\Omega)$ is also bounded in $H^{1}(\Omega)$. Using the Rellich selection theorem (Corollary 6.8) provides a strongly converging subsequence (for convenience denoted again by u_{n}) in $L_{2}(\Omega)$, that is $\left\|u-u_{n}\right\|_{L_{2}(\Omega)} \rightarrow 0$ as $n \rightarrow \infty$. Applying estimate (3) to the difference $u_{n}-u_{m}$ shows that u_{n} is Cauchy in $H^{2}(\Omega)$ and hence, by the uniqueness of the limit one infers that $u \in \grave{H}^{2}(\Omega)$. Because of $\Delta u_{n} \rightarrow 0$ in $L_{2}(\Omega)$ one knows also that $\Delta u=0$. Using the maximum principle (Corollary 6.6) gives $u=0$. However, this is a contradiction to $\left\|u_{n}\right\|_{H^{2}(\Omega)}=1$ for all n.

Problem 3. Recall that the Fourier transform \mathscr{F} extends to a unitary operator on $L_{2}\left(\mathbb{R}^{d}\right)$, that is $\mathscr{F}^{\prime} \mathscr{F}=\mathscr{F} \mathscr{F}^{\prime}=I$. Here,

$$
\mathscr{F}[f(x)](\xi)=\hat{f}(\xi)=\int_{\mathbb{R}^{d}} e^{-i x \cdot \xi} f(x) d x \quad \text { and } \quad \mathscr{F}^{\prime}[g(\xi)](x)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{i x \cdot \xi} g(\xi) d \xi,
$$

where $f, g \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. Prove that $u \in H^{k}\left(\mathbb{R}^{d}\right)$ if and only if

$$
\int_{\mathbb{R}^{d}}\left(1+|\xi|^{2}\right)^{k}|\hat{u}(\xi)|^{2} d \xi<\infty
$$

Proof. Suppose that $u \in H^{k}\left(\mathbb{R}^{d}\right)$. Then $\partial^{\alpha} u \in L_{2}\left(\mathbb{R}^{d}\right)$ for $|\alpha| \leq k$ if and only if $\widehat{\partial^{\alpha} u}=$ $(i \xi)^{\alpha} \hat{u}(\xi)$. Hence, we conclude that $u \in H^{k}\left(\mathbb{R}^{d}\right)$ implies because of Parseval's identity that

$$
\int_{\mathbb{R}^{d}}\left|\xi^{2 \alpha}\right||\hat{u}(\xi)|^{2} d \xi<\infty \quad \text { for all }|\alpha| \leq k
$$

Using the multinomial theorem, in particular the formula,

$$
\left(1+|\xi|^{2}\right)^{k}=\sum_{|\alpha|=k} \frac{k!\xi^{2 \alpha}}{\alpha!}
$$

one can show that there exist constants $C_{1}, C_{2}>0$ such that

$$
\sum_{|\alpha| \leq k}\left|\xi^{2 \alpha}\right| \leq C\left(1+|\xi|^{2}\right)^{k} \leq C_{2} \sum_{|\alpha| \leq k}\left|\xi^{2 \alpha}\right| .
$$

The first inequality shows the implication $u \in H^{k}\left(\mathbb{R}^{d}\right)$ implies $\int_{\mathbb{R}^{d}}\left(1+|\xi|^{2}\right)^{k}|\hat{u}(\xi)|^{2} d \xi<\infty$, the second inequality the opposite direction.

