AA4 Energy and Markets

Berlin Mathematics Research Center

PDAEs with Uncertainties for the Analysis, Simulation and Optimization of Energy Networks

René Henrion (WIAS), Nicolas Perkowski (FU), Caren Tischendorf (HU) and Maximilian Schade (HU)

Topic and background of the project

1. Analysis and simulation of PDE systems with stochastic algebraic constraints

Example: (gas) network model

 $\partial_t \varphi(\mathbf{v}) + \partial_{\mathbf{X}} \psi(\mathbf{v}) + f(\mathbf{v}) = \mathbf{0}$ $g(\mathcal{R}\mathbf{v}, \mathbf{w}) = C\mathbf{u} + C\mathbf{X}_t$

v = v(x, t)pressures and flows for pipesw = w(t)pressures and flows for active elements (valves, ...)u = u(t)input/output flow/pressure \mathcal{R} boundary operator

Examples

- How large are the pressure fluctuations in the network for common exit fluctuations and a particular switching scenario?
- How do the maximal booking capacities change with an additional pipeline/powerline?

fluctuations at input/output nodes modeled via mean-reverting Ornstein-Uhlenbeck process X_t $dX_t = \lambda(\mu - X_t)dt + \sigma dW_t, \qquad \lambda > 0$

- *W_t* Wiener process
- 2. Optimization problems with implicit probabilistic constraints

 $\min \left\{ f(u) \mid h(v'_{\xi}, v_{\xi}, \xi) = 0, \ \mathbb{P}[g(u, v_{\xi}) \le 0] \ge p \right\} \quad (p \in (0, 1))$

Example: maximization of free capacities in a (gas) network

- ξ stochastic loads at exits
- *v* pressures & flows in network
- *u* free booking capacities at exits
- h = 0 (P)DAE model describing (gas) transport in a network
- $g \leq 0$ pressure bounds at exits
- *p* safety level
 - weighted sum of free capacities in the network

Modeling of Gas Networks

(Simplified) parabolic model:

For the optimization: On each pipe, we have the ODE

Aims and Mathematical Challenges

Goal 1: Solution theory for SPDAEs in variational form

 $\mathcal{A}d(\mathcal{D}V_t) + \mathcal{B}(V_t)dt = C(t, V_t)dX_t$

Methodology:

Combine (nonlinear) PDAE and SPDE analysis by
decoupling and proper choice of X_t
approximation of SPDAE solutions via SDAEs

$$\partial_t p_R + \alpha \frac{q_R - q_L}{h} = \mathbf{0},$$

$$\partial_t q_L + \beta \frac{p_R - p_L}{h} + \gamma \frac{q_L |q_L|}{p_R} = \mathbf{0},$$

with constraints at junctions:

- sum of directed flows is zero
- pressures coincide

Time discretization via symplectic Euler:

 $p_{k+1} = p_k + \alpha \frac{\Delta t}{h} q_{k+1} - \alpha \frac{\Delta t}{h} q_{set}(t_{k+1}),$ $q_{k+1} = q_k - \beta \frac{\Delta t}{h} p_k + \beta \frac{\Delta t}{h} p_{set}(t_{k+1}) - \Delta t \gamma \frac{q_k |q_k|}{p_k},$

with initial conditions

$$p_0 = \sqrt{p_{set}(t_0)^2 - \tilde{\gamma}q_{set}(t_0)|q_{set}(t_0)|},$$

$$q_0 = q_{set}(t_0)$$

 $\begin{array}{c} q_{1,L} \\ 1 \\ p_{0,R} \end{array}$

0

 $\begin{array}{c} q_{0,L} \\ \hline 0 \\ p_{set} \end{array}$ Y-network for testing of spherical-radial decomposition

 $\begin{array}{ll} h & \text{pipe length} \\ \Delta t & \text{time step} \\ p_k, q_k & \text{pressure/flow at time } t_k \end{array}$

density

 ρ

- speed of the gas
- λ , **D** pipe parameters

Goal 2: Solve optimization problems with implicit probabilistic constraints $\min \{ f(u) \mid \mathcal{A}(\mathcal{D}v_{\xi})' + \mathcal{B}(v_{\xi}) = r(\xi, \cdot), \ \mathbb{P}[g(u, v_{\xi}) \le 0] \ge p \} \quad (p \in (0, 1))$ Methodology:

Apply spherical-radial decomposition to solve optimization problem
with probabilistic constraints
exploit perturbation theory for PDAEs

Past Results

Port-Hamiltonian systems of the form

 $\mathcal{A}^*\partial_t(\mathcal{A}u)(t) + \mathcal{B}u(t) = r(t)$ $u(0) = u_0$

which arise from the Lagrange formulation of

 $a\partial_t p + \partial_x q = 0,$ $b\partial_t q + \partial_x p + dq = 0,$

for $u = (p, q, \lambda) \in L^2(\mathcal{E}) \times H^1(\mathcal{E}) \times \mathbb{R}^{\mathcal{V}_0}$ have an index of 2 for sufficiently smooth inputs

Plan for Next Year

QMC sampling on sphere

1. Analyze (parabolic) prototype

 $\dot{x}(t) + f(z(t), X_t, t) = 0,$ g(z(t), t) = 0, $dX_t + \mathcal{B}(X_t, t)dt + \mathcal{R}(X_t, z(t), t)dW_t = 0,$ **2.** Apply spherical-radial decomposition to solve the optimization problem for the discretized system

$$p_{k+1} = p_k + \alpha \frac{\Delta t}{h} q_{k+1} - \alpha \frac{\Delta t}{h} q_{set}(t_{k+1}),$$

Cooperations

- **AA4-4**
- coupling of supply/demand models with energy transport
- arbitrage constraints

AA4-5

References

- [1] P. Benner, S. Grundel, C. Himpe, C. Huck, T. Streubel, and C. Tischendorf. Gas network benchmark models.
- In Applications of Differential-Algebraic Equations: Examples and Benchmarks, pages 171–197. Springer International Publishing, 2018.
- [2] C. Gotzes, H. Heitsch, R. Henrion, and R. Schultz. On the quantification of nomination feasibility in stationary gas networks with random load. *Mathematical Methods of Operations Research*, 84(2):427 – 457, 2016.

Spherical-radial decomposition

share approaches for modeling and optimization under uncertainty
compare results

External

- DFG-TRR154 "Modellierung, Simulation und Optimierung am Beispiel von Gasnetzwerken"
- BMWi-Projektverbund MathEnergy
 "Mathematische
 Schlüsseltechniken für
- Energienetze im Wandel"

- [3] M. Gubinelli, P. Imkeller, and N. Perkowski. Paracontrolled distributions and singular PDEs.
- Forum of Mathematics, Pi, 3(6), 2015.
- [4] C. Huck. Perturbation analysis and numerical discretisation of hyperbolic partial differential algebraic equations describing flow networks.
 PhD thesis, Humboldt-Universität zu Berlin, 2018.
- [5] W. Liu and M. Röckner. Stochastic Partial Differential Equations: An Introduction.
 - Springer International Publishing, 2015.
- [6] M. Matthes. Numerical Analysis of Nonlinear Partial Differential-Algebraic Equations: A Coupled and an Abstract Systems Approach. PhD thesis, Universität zu Köln, 2012.
- [7] M. Schade. Abstract structure-preserving model reduction for damped wave propagation in transport networks. Unpublished, 2019.

