Algebraische Gruppen / Liealgebren Exercise Sheet 2

Exercise 2.1

Let $\Phi \subset E$ be a root system, let $\alpha, \beta \in \Phi$ be linearly independent.

- (a) The set $J = \{j \in \mathbb{Z} | \beta + j\alpha \in \Phi\}$ is an interval of the form $[-q, p] \cap \mathbb{Z}$ for certain $p, q \in \mathbb{Z}_{\geq 0}$. (Hint: Exercise 1.3)
- (b) The set of elements of Φ of the form $\beta + j\alpha$ with $j \in \mathbb{Z}$ is stable under the reflection s_{α} . We have $s_{\alpha}(\beta + p\alpha) = \beta q\alpha$.
- (c) $q p = \check{\alpha}(\beta)$.

Exercise 2.2

Let $\Phi \subset E$ be a root system, let α , $\beta \in \Phi$, let $s_{\check{\alpha}}, s_{\check{\beta}} \in W(\Phi)$ be the corresponding reflections. In the lectures we saw the explicit list of all the possibilities for the relative position of α , β . In each of these cases find the order of the composition $s_{\alpha}s_{\beta} = s_{\alpha} \circ s_{\beta} \in W(\Phi)$.

If $\check{\alpha}(\beta) = 2$ and $\check{\beta}(\alpha) = 1$, and similarly if $\check{\alpha}(\beta) = -2$ and $\check{\beta}(\alpha) = -1$, we get $\operatorname{ord}(s_{\alpha}s_{\beta}) = 4$ (again by evaluating on α and β).

If $\check{\alpha}(\beta) = 3$ and $\check{\beta}(\alpha) = 1$, and similarly if $\check{\alpha}(\beta) = -3$ and $\check{\beta}(\alpha) = -1$, we get $\operatorname{ord}(s_{\alpha}s_{\beta}) = 6$ (again by evaluating on α and β).

If α and β are proportional then $\operatorname{ord}(s_{\alpha}s_{\beta}) = 1$.

Exercise 2.3

- (a) Show that the list of one- and two-dimensional root systems given in paragraph two of the lectures indeed consists of root systems, and is complete.
- (b) Find the orders of the corresponding Weyl groups.

Exercise 2.4

Let $\Phi \subset E$ be a root system. Show that $W(\Phi)$ is a normal subgroup in $A(\Phi)$.

Exercise 2.5

Let $\Phi \subset E$ be a reduced root system.

(a) Let $E' \subset E$ be an \mathbb{R} -sub vector space, let $\alpha \in \Phi$ be such that $s_{\alpha}(E') \subset E'$. Show that $\alpha \in E'$ or $E' \subset \{v \in E \mid s_{\alpha}(v) = v\}$.

(b) Show that $\check{\Phi} = \{\check{\alpha} \mid \alpha \in \Phi\}$ is a reduced root system in E^* and that there is a canonical isomorphism $W(\Phi) \cong W(\check{\Phi})$.