Algebraische Gruppen / Liealgebren Exercise Sheet 5

Exercise 5.1

Let $n \geq 2$, let e_1, \ldots, e_n be the standard basis of $E = \mathbb{R}^n$. Let

$$\Phi = \{ \pm 2e_i \mid 1 \le i \le n \} \cup \{ \pm e_i \pm e_j \mid 1 \le i < j \le n \}$$

(thus Φ consists of $2n + 2n(n-1) = 2n^2$ elements). Let $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ with

- $\alpha_1 = e_1 e_2, \quad \alpha_2 = e_2 e_3, \quad \dots, \quad \alpha_{n-1} = e_{n-1} e_n, \quad \alpha_n = 2e_n.$
- (a) $\Phi \subset E$ is a root system. It is denoted by C_n .
- (b) Δ is a basis for Φ .
- (c) $W(B_n) \cong W(C_n)$.
- (d) $C_n \cong B_n$ if and only if n = 2.

Exercise 5.2

Let V be a finite dimensional real vector space. Let Φ be a finite set and suppose that for all $\alpha \in \Phi$ we are given a hyperplane H_{α} in V. For $v \in V - H_{\alpha}$ we denote by $D_{\alpha}(v)$ the connected component of $V - H_{\alpha}$ which contains v. Consider the equivalence relation \equiv on V for which $v \equiv v'$ if and only if for all $\alpha \in \Phi$ we have: $v, v' \in H_{\alpha}$ or $[v, v' \notin H_{\alpha}$ and $D_{\alpha}(v) = D_{\alpha}(v')]$. The equivalence classes for this equivalence relation are called the *sides* of the hyperplane arrangement $\mathcal{H} = \{H_{\alpha} \mid \alpha \in \Phi\}$. For a side F we call

$$L_F = \bigcap_{H_\alpha \supset F} H_\alpha$$

the support of F (if F is not contained in any H_{α} we put $L_F = V$), and we call $\dim(L_F)$ the dimension of F.

Let F be a side.

- (a) Let $x \in F$. We have $F = L_F \cap \bigcap_{\substack{\alpha \in \Phi \\ x \notin H_\alpha}} D_\alpha(x)$ and $\overline{F} = L_F \cap \bigcap_{\substack{\alpha \in \Phi \\ x \notin H_\alpha}} \overline{D_\alpha(x)}$ (where $\overline{(.)}$ denotes the operation of taking the topological closure in the topological vector space V).
- (b) F is a convex open subset of L_F .
- (c) The closure \overline{F} of F in V is the union of F and some sides of strictly smaller dimension.
- (d) Let also F' denote a side. If $\overline{F} = \overline{F}'$ then F = F'.

(e) Let Ψ ⊂ Φ be a subset, put M = ∩_{α∈Ψ}H_α. Then the following (i), (ii), (iii) are equivalent: (i) There is a side F' with M = L_{F'} and F' ∩ F ≠ Ø.
(ii) There is a side F' with M = L_{F'} and F' ⊂ F. (iii) There is some x ∈ M ∩ F with the following property: for all α ∈ Φ with x ∈ H_α we have M ⊂ H_α.

Exercise 5.3

Let Φ be a reduced root system, let $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ be a basis for Φ . For $1 \leq i, j \leq n$ let $m_{ij} = \operatorname{ord}(s_{\alpha_i}s_{\alpha_j})$ be the order of the element $s_{\alpha_i}s_{\alpha_j} = s_{\alpha_i} \circ s_{\alpha_j}$ in $W(\Phi)$. We define the *Coxeter matrix* of Φ to be the $n \times n$ -matrix $M = (m_{ij})_{1 \leq i,j \leq n}$.

- (a) M is symmetric, all diagonal entries are = 1, we have $m_{ij} \in \{2, 3, 4, 6\}$ for $i \neq j$.
- (b) Up to reindexing, M does not depend on the choice of Δ .
- (c) One can read off from M the number of the irreducible direct summands of Φ , and their ranks.
- (d) Φ is uniquely determined by M.