Algebraische Gruppen / Liealgebren Exercise Sheet 6

Exercise 6.1

Let $n \geq 4$, let e_1, \ldots, e_n be the standard basis of $E = \mathbb{R}^n$. Let $\Phi = \{\pm e_i \pm e_j \mid 1 \leq i < j \leq n\}$ (thus Φ consists of 2n(n-1) elements). Let $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ with $\alpha_1 = e_1 - e_2, \alpha_2 = e_2 - e_3, \ldots, \alpha_{n-1} = e_{n-1} - e_n$ and $\alpha_n = e_{n-1} + e_n$.

- (a) $\Phi \subset E$ is a root system. It is denoted by D_n .
- (b) Δ is a basis for Φ .
- (c) $W(\Phi)$ is isomorphic with the semidirect product of the symmetric group S_n and $(\mathbb{Z}/2\mathbb{Z})^{n-1}$.

Exercise 6.2

Let $\mathcal{H} = \{H_{\alpha} \mid \alpha \in \Phi\}$ be a hyperplane arrangement in the real vector space V, as in Exercise 5.2. A connected component of $V - \bigcup_{\alpha \in \Phi} H_{\alpha}$ is called a *chamber* for \mathcal{H} . Let L be a hyperplane in V, let $\Omega \subset L$ be a non empty subset, open in L.

- (a) The sides which are not contained in any H_{α} are precisely the chambers. Any element of V lies in the closure of some chamber.
- (b) If $L \neq H_{\alpha}$ for all $\alpha \in \Phi$ then there is a chamber C with $C \cap \Omega \neq \emptyset$.
- (c) If $L = H_{\alpha}$ for some $\alpha \in \Phi$ then there is some $x \in \Omega$ not contained in any other H_{β} (i.e. with $x \notin H_{\beta}$ for all $\beta \in \Phi$ with $H_{\beta} \neq L$).

Exercise 6.3

Let Φ be a reduced irreducible root system. Recall that also $\check{\Phi}$ is a recuded root system (cf. Exercise 2.5).

- (a) Φ is irreducible.
- (b) If all $\alpha \in \Phi$ have the same length, then also all $\check{\alpha} \in \check{\Phi}$ have the same length, and Φ is isomorphic (as a root system) with $\check{\Phi}$.
- (c) If Φ contains elements of two different lengths, short roots and long roots, then this is also true for $\check{\Phi}$, and $\alpha \in \Phi$ is long if and only if $\check{\alpha} \in \check{\Phi}$ is short.

Exercise 6.4

Let K be a field. Describe all isomorphism classes of K-Lie algebras \mathfrak{g} with $\dim_K(\mathfrak{g}) \leq 2$.