## Zahlenentheorie

## Exercise Sheet 2

## Exercise 2.1

Let $K$ be a field, let $||:. K \rightarrow \mathbb{R}_{\geq 0}$ be an absolute value on $K$. A $K$-vector space norm on a finite dimensional $K$-vector space $V$ is a map $\|\|:. V \rightarrow \mathbb{R}_{\geq 0}$ satisfying the following conditions:
(i) $\|v\|=0$ if and only if $v=0$
(ii) $\|v+w\| \leq\|v\|+\|w\|$ for all $v, w \in V$
(iii) $\|a v\|=|a| \cdot\|v\|$ for all $a \in K$ and $v \in V$

Two $K$-vector space norms on $V$ are said to be equivalent if and only if they define the same topology on $V$. Show the following:
(a) If $e=\left\{e_{i}\right\}_{i}$ is a $K$-basis of the finite dimensional $K$-vector space $V$, then

$$
\left\|\sum_{i} a_{i} e_{i}\right\|_{e}:=\max _{i}\left|a_{i}\right| \quad \text { for } a_{i} \in K
$$

defines a $K$-vector space norm on $V$.
(b) Two $K$-vector space norms $\|\cdot\|_{1},\|.\|_{2}$ on a finite dimensional $K$-vector space $V$ are equivalent if and only if there are constants $C_{1}, C_{2} \in \mathbb{R}_{>0}$ with $C_{1}\|v\|_{1} \leq\|v\|_{2} \leq C_{2}\|v\|_{1}$ for all $v \in V$.
(c) If $K$ complete then all $K$-vector space norms on a finite dimensional $K$-vector space $V$ are equivalent. For any such norm, $V$ is complete (i.e. each Cauchy sequence converges).

## Exercise 2.2

Let $|.|_{1}$ and $|\cdot|_{2}$ be non trivial absolute values on a field $K$. Show the equivalence of the following statements:
(a) $|.|_{1}$ and $|.|_{2}$ are equivalent, i.e. they define the same topology on $K$.
(b) There is some $s \in \mathbb{R}_{>0}$ with $|x|_{1}=|x|_{2}^{s}$ for all $x \in K$.
(c) For all $x \in K$ with $|x|_{1}<1$ we have $|x|_{2}<1$.

Ansatz: In order to see $(\mathrm{c}) \Rightarrow(\mathrm{b})$ try to show first that $|x|_{1}<1$ for all $x \in K$ with $|x|_{2}<1$. Then fix some $a \in K$ with $0<|a|_{1}<1$. For each $x \in K^{\times}$we then find $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ with $|x|_{1}=|a|_{1}^{\alpha_{1}}$ and $|x|_{2}=|a|_{2}^{\alpha_{2}}$. Show that $\alpha_{1}=\alpha_{2}$.

## Exercise 2.3

(a) Every sequence in $\mathbb{Z}_{p}$ has a convergent subsequence. In particular, $\mathbb{Z}_{p}$ is compact.
(b) Given $f(X) \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ (for some $s \in \mathbb{N}$ ), one may ask for the solutions $\left(x_{1}, \ldots, x_{s}\right) \in \mathbb{Z}^{s}$ of the diophantine equation $f(X)=0$. As an (easier) approximation, one may ask for the $x=\left(x_{1}, \ldots, x_{s}\right) \in \mathbb{Z}^{s}$ satisfying $f(x) \equiv 0$ modulo $m \mathbb{Z}$, for a given $m \in \mathbb{N}$. The Chinese Remainder Theorem tells us that it will be enough to answer this latter question for all $m$ 's which are powers of prime numbers, i.e. to find the $x=\left(x_{1}, \ldots, x_{s}\right) \in \mathbb{Z}^{s}$ satisfying $f(x) \equiv 0$ modulo $p^{n} \mathbb{Z}$, for all prime numbers $p$ and all $n \in \mathbb{N}$. Fixing $p$, working with the $p$-adic numbers $\mathbb{Z}_{p}$ provides a conceptual approach towards the solution set of $f(x) \equiv 0$ modulo $p^{n} \mathbb{Z}$ for all $n$ simultaneously. This is the upshot of the following problem.

Let $p$ be a prime number. A polynomial $f(X) \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ has a zero $\left(x_{1}, \ldots, x_{s}\right)$ in $\mathbb{Z}_{p}^{s}$ if and only if it has a zero in $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{s}$ for each $n \in \mathbb{N}$.

## Exercise 1.4

Let $p$ be a prime number, let $n \in \mathbb{N}$. Prove the following formula for $v_{p}(n!)$ : If we write $n=a_{0}+a_{1} p+\ldots+a_{k} p^{k}$ with $a_{i} \in\{0, \ldots, p-1\}$ and put $s_{n}=a_{0}+a_{1}+\ldots+a_{k}$, then

$$
v_{p}(n!)=\frac{n-s_{n}}{p-1} .
$$

