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Abstract. We review results on and around the almost complex structure on S6, both
from a classical and a modern point of view. These notes have been prepared for the Work-
shop “(Non)-existence of complex structures on S6” (Erste Marburger Arbeitsgemeinschaft
Mathematik – MAM-1 ), held in Marburg in March 2017.

1. Introduction

It is well known that the sphere S6 admits an almost Hermitian structure induced by
octonionic multiplication, and that this structure stems from the transitive action of the
compact exceptional Lie group G2 on it. In 1955, Fukami and Ishihara were presumably
the first authors to devote a separate paper to the detailed investigation of S6 and showed
in particular that S6 is the naturally reductive space G2/SU(3) [FI55]. In 1958, Calabi
studied hypersurfaces in the space of imaginary octonions and proved that the induced
almost complex structure is never integrable if the hypersurface is compact [Cal58]. In fact
the almost Hermitian structure on the 6-sphere is a very special one: Already in [FI55], it is
observed that the Levi Civita derivative of J satisfies

(∗) (∇g
XJ)X = 0 for all vector fields X.

Such manifolds are called nearly Kähler and they were investigated intensively by Gray in
a series of papers [Gr66, Gra70, G76]. In particular, he showed in dimension 6 that they
are Einstein and their first Chern class vanishes. In fact, for many reasons dimension 6 is
of particular interest for nearly Kähler geometry [Na10]. For a long time the only compact
examples of nearly Kähler manifolds were the four homogeneous examples: S6, S3×S3, CP

3

and the flag manifold F2. The aim of this paper is to provide a concise review of properties
of nearly Kähler manifolds in dimension 6 with special attention given to the sphere S6.
After some historical remarks, we start by recalling Calabi’s result about hypersurfaces in
the space of imaginary octonions R7. Then we discuss the intrinsic torsion approach and
naturally reductive spaces and briefly recall Gray’s [G76] and Kirichenko’s [Ki77] results.
Next we present the spinoral approach of R. Grunewald [Gru90] and a modern view on
it. We finish by giving an overview of L. Foscolo and M. Haskins contribution [FH17].
They discovered non-homogeneous cohomogeneity one nearly Kähler structures on S6 and
conjectured that these are the only cohomogeneity one examples.

2. Some historical comments

Clearing the facts around the almost complex structure on S6 took several independent
steps. In particular, it was not noticed immediately that (and how) it was related to the
transitive action of G2.
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Montgomery and Samelson proved in 1943 that the only compact connected simple Lie
group which can be transitive on S2n is SO(2n + 1)—except for a a finite number of n′s
[MS43, Thm II, p.462]. Their method was of topological nature and required the knowledge
of the homology rings of simple Lie groups, which was not yet available for the five exceptional
simple Lie groups; hence they couldn’t give any further information on the exceptional cases.

Six years later, Armand Borel proceeded by constructing the homogeneous spaces directly,
which lead him to the result that the only sphere with a transitive group G acting that is
not orthogonal is S6 with G = G2 [Bo49, Thm III, p. 586]. This completed the classification
of transitive sphere actions and showed, in particular, that G2 is the only exceptional Lie
group with such an action.

Meanwhile, Adrian Kirchhoff had noticed in 1947 that S6 carries an almost complex struc-
ture induced from octonionic multiplication ([Ki47]; see also [Eh50]). In his main theorem,
Kirchhoff related the existence of an almost complex structure on Sn to the parallelism of
Sn+1.

In 1951, Ehresmann and Libermann [EL51] as well as Eckmann and Frölicher [EF51]
observed independently that this almost complex structure on S6 is not integrable — in
fact, their articles appeared in the same volume of the Comptes Rendus Hebdomadaires des
Séances de l’Académie des Sciences, Paris. While Eckmann and Frölicher were interested in
formulating the integrability condition and treated S6 merely as an example where it didn’t
hold, the aim of Ehresmann and Libermann was the local description of locally homogeneous
almost hermitian manifolds in terms of Cartan structural equations, and they found that
the equations exhibited an exceptional structure for n = 6. They stated [EL51, p. 1282]:

“La structure considérée est donc localement équivalente à une structure
presque hermitienne sur S6 admettant G2 comme groupe d’automorphismes.
Ce groupe ne peut laisser invariante sur S6 qu’une seule structure presque
complexe. Celle-ci est donc isomorphe à la structure presque complexe définie
à l’aide des octaves de Cayley. Comme la deuxième torsion dans les formules
(5) n’est pas nulle, cette structure ne dérive pas d’une structure complexe.”1

Hence, they seem to be the first authors to connect the transitive G2-action on S6 to
its octonionic almost complex structure. A detailed account of the results of [EF51] and
further material was given by Frölicher four years later [Fr55]; however, in his discussion of
homogeneous almost complex manifolds, he doesn’t mention S6. Remarkably, he described
already (as did [FI55]) the characteristic connection of S6 and proved that its torsion is given
by the Nijenhuis tensor.

In [FI55], all these thoughts on S6 are brought together for the first time, and the charac-
teristic connection is proved to coincide with the canonical connection of the homogeneous
space G2/SU(3).

The first author to suggest the investigation of manifolds satisfying the abstract nearly
Kähler condition (∗) was Tachibana in [Ta59], who called such manifolds K-spaces and
proved, amongst other things, that their Nijenhuis tensor is totally antisymmetric. No

1“The structure we considered is therefore locally equivalent to an almost hermitian structure on S6

admitting G2 as its group of automorphisms. This group can leave invariant only one almost complex
structure on S6. It is therefore isomorphic to the almost complex structure defined with the help of Cayley’s
octonions. Since the second torsion of the formulas (5) doesn’t vanish, this structure is not induced from a
complex structure.” (translated by the authors)
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examples were discussed, although it is clear from the reference made to [FI55, Fr55] that
the inspiration came from S6. The paper [Ko60] continued the investigation of K-spaces.

Inspired by the papers of Calabi [Cal58] and Koto [Ko60], Alfred Gray used in 1966 for
the first time the term nearly Kähler manifold [Gr66]. He writes in the introduction:

“The manifolds we discuss include complex and almost Kähler manifolds; also
S6 with the almost complex structure derived from the Cayley numbers falls
into a class of manifolds which we call nearly Kählerian.”

This was the starting point of the career of S6 as a most remarkable nearly Kähler manifold.
Surprisingly, most classes of almost Hermitian manifolds that were systemized later in the
Gray-Hervella classification [GH80] appear already in this paper.

3. The almost complex structures induced from octonions

In this section we present an explicit approach for constructing the nearly Kähler structure
on S6. The construction goes back to Calabi [Cal58], who studied hypersurfaces in R7 with
a complex structure induced from octonions.

3.1. Seven-dimensional cross products. Recall that the octonion algebra O is the unique
8-dimensional composition algebra (or equivalently normed division algebra). It can be
defined from quaternions using the Cayley-Dickson construction O = H ⊕ JH, with the
following operations:

q1 + Jq2 = q1 − Jq2, (q1 + Jq2)(q3 + Jq4) = q1q3 + q4q2 + J(q2q3 + q4q1).

Consequently, the octonions can be viewed as an 8 dimensional (non-associative) algebra
with basis 1, e1, . . . , e7, where ei are imaginary units and the multiplication between them
is defined above. Note that we can take e1, e2, e3 to be imaginary quaternions. Consider
the vector subspace of imaginary octonions Y := span{e1, . . . , e7} which, as a vector space,
is isomorphic to R7. The octonion multiplication induces (by restriction and projection) a
cross product on Y via the formula

A × B :=
1

2
(AB − BA) .

The group of automorphisms of Y is the exceptional group G2, see [Dr17]. The vector space
Y together with a cross product and scalar product is sometimes called the Cayley space.
The cross product has the following properties, see again [Dr17] :

• 〈A, (B × C)〉 = 〈(A × B), C〉 =: (ABC) (scalar triple product identity),
• A × (A × B) = −|A|2B + 〈A, B〉A (Lagrange or Malcev identity),
• If C is orthogonal to A and B, then

(A × B) × C = A × (B × C) − 〈A, B〉C .

However, there are some significant differences between dimensions 3 and 7 coming from the
non-associativity of octonions—for example, the Jacobi identity does not hold in dimension
7.
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3.2. Almost complex structure on hypersurfaces in Cayley space. The results de-
scribed in this section are mainly due to Calabi [Cal58]. Let S be a 6-dimensional oriented
manifold immersed into the Cayley space Y . The canonical orientation on Y induces a
normal vector field on S, called N . Consider its second fundamental form and denote by
K its shape operator. The eigenvalues of K are just the principal curvatures. We define
J ∈ End(TS) by

J(X) := N × X, X ∈ TS,

and take g to be the metric on S induced by the pull back of the scalar product on Y .

Lemma 3.1. J is an almost complex structure on S such that (S, J, g) is an almost Hermitian
manifold, and it satisfies the identity

〈(∇g
XJ)(Y ), Z〉 = 〈K(X) × Y, Z〉.

Proof. First we need to show that J2 = − id. By the Malcev identity, N × (N × X) =
−|N |2X + 〈N, X〉N, for any X ∈ (TS). As X is perpendicular to N , this proves the claim.
Then, using the scalar triple product and Malcev identities we obtain

〈J(X), J(Y )〉 = 〈N × X, N × Y 〉 = 〈N × X) × N, Y 〉 = −〈N × (N × X), Y 〉 = 〈X, Y 〉 ,

showing the J-invariance of the metric. Finally, let us compute (∇g
XJ)(Y ) for any tangent

vectors X, Y :

(∇g
XJ)(Y ) = ∇g

X(J(Y )) − J(∇g
XY ) = ∇g

X(N × Y ) − N ×∇g
XY

= ∇g
XN × Y + N ×∇g

XY − N ×∇g
XY = K(X) × Y .

This yields the claimed formula for ∇g
XJ . �

Definition 3.1. Let (M, g, J) be an almost Hermitian manifold. If (∇g
XJ)X = 0 and

∇gJ 6= 0, then (M, g, J) is called nearly Kähler manifold.

The almost complex structure of a nearly Kähler manifold is never integrable, see [G76] or
[AFS05]. In fact, an easy calculation shows that its Nijenhuis tensor is given by N(X, Y ) =
4(∇g

XJ)JY . A direct consequence of the last lemma is the next

Proposition 3.1. Let g be the standard metric on S6 and J the almost complex structure
defined by the cross product on the Cayley space. Then (S6, g, J) is a nearly Kähler manifold.

Proposition 3.2 (Calabi [Cal58]). If (S, I) is a compact, oriented 6-manifold with an im-
mersion into the Cayley space Y, the induced almost complex structure J is non-integrable.

To prove this theorem Calabi studied the shape operator K of the hypersurface. He found
that the integrability condition for J is that K is complex anti-linear,

K ◦ J = −J ◦ K .

In any closed hypersurface of the Euclidian space, there exists an open subset on which the
second fundamental form is positive or negative definite. But if the tangent vector X is an
eigenvector of the shape operator with eigenvalue λ , then J(X) is again an eigenvector with
eigenvalue −λ. This yields the contradiction.
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4. S6 as naturally reductive space

A homogeneous Riemannian space M = G/H is called reductive if there exists an Ad(H)-
invariant subspace m such that g = h⊕m. Denote by 〈.. , ..〉 the inner product in m defining
the G-invariant metric. If it satisfies

〈[X, Y ], Z 〉 = −〈[X, Z] , Y 〉 ,

the homogeneous space is called naturally reductive. In this case the tensor

T (X, Y, Z) := 〈[X , Y ] , Z 〉

is totally skew symmetric, i.e. T is a 3-form. The canonical connection ∇c of G/H is the
unique metric connection with skew symmetric torsion tensor T ,

∇c = ∇g +
1

2
T .

The holonomy of ∇c is contained in the isotropy group H , i.e. the canonical connection
is much more adapted to the space G/H then the Levi-Civita connection ∇g. A naturally
reductive space with vanishing torsion T is a Riemannian symmetric space. Naturally re-
ductive homogeneous spaces have the special property that the torsion and the curvature
are parallel with respect to the canonical connection,

∇cRc = 0 , ∇cT c = 0 .

Observe that a homogenous Riemannian manifold can be naturally reductive in different
ways, it depends on the choice of the subgroup G ⊂ Iso(M) of the isometry group. However,
this happens only for spheres or Lie groups, see the recent results of C. Olmos and S. Reggiani
[OR12].

Any nearly Kähler manifold admits a unique hermitian connection with skew symmetric
torsion, too. This connection has been introduced by A. Gray and is called the characteristic
connection of the nearly Kähler manifold, see [G76]. Let us explain the proof as well as the
formula for the characteristic torsion.

Proposition 4.1. Let (M, g, J) be a nearly Kähler manifold. There exists a unique metric
connection preserving the almost complex structure and with skew symmetric torsion, and
its torsion 3-form is given by the formula

T c(X, Y, Z) = 〈(∇g
XJ)(JY ) , Z〉 .

Proof. Consider a metric connection ∇ = ∇g + 1

2
T with skew symmetric torsion. The

condition ∇J = yields the equation

0 = 〈(∇g
XJ)(Y ) , Z〉 +

1

2
T (X, JY, Z) +

1

2
T (X, Y, JZ) .

Symmetrizing the latter equation with respect to X and Y , we obtain

0 = 〈(∇g
XJ)(Y ) , Z〉 + 〈(∇g

Y J)(X) , Z〉 +
1

2
T (X, JY, Z) +

1

2
T (Y, JX, Z) .

In case the almost complex structure is nearly Kähler we obtain the condition

T (X, JY, Z) = −T (Y, JX, Z),
5



and moreover

T (X, Y, JZ) = T (Y, JZ, X) = −T (Z, JY, X) = T (X, JY, Z) .

Inserting the latter formula into the first one, we finally obtain the formula for the charac-
teristic torsion

0 = 〈(∇g
XJ)(Y ) , Z〉 + T (X, JY, Z) .

�

If a nearly Kähler manifold is a reductive homogeneous space, the canonical connection
in the sense of reductive spaces coincides with the characteristic connection in the sense of
nearly Kähler manifolds. With respect to the full isometry group G = SO(7), the round
sphere S6 becomes a symmetric space,

S6 = SO(7)/SO(6),

the canonical connection coincides with the Levi-Civita connection and is hence torsion free.
On the other side, taking into account the almost complex structure J induced by the oc-
tonions, S6 becomes a naturally reductive space (see [FI55], [R93]). Indeed, by construction
J and g are invariant under the action of the automorphism group of octonions. In partic-
ular, the exceptional group G2 ⊂ SO(7) preserves the metric as well as the almost complex
structure. Moreover, G2 acts transitively on S6. The isotropy subgroup preserves the linear
complex structure of the tangent space. Consequently, its an 8-dimensional subgroup of U(3)
isomorphic to SU(3), see [Dr17].

Proposition 4.2. S6 = G2/SU(3) is naturally reductive and the torsion 3-form of the canon-
ical connection is given by the formula

T c(X, Y, Z) = −〈J(X × Y ), Z〉 = −〈N, (X × Y ) × Z〉 .

Proof. Consider the metric connection ∇ defined by the formula

〈∇XY, Z〉 := 〈∇g
XY, Z〉 −

1

2
〈J(X × Y ), Z〉 .

We compute the covariant derivative ∇J :

〈(∇XJ)Y, Z〉 = 〈(∇g
XJ)Y, Z〉 −

1

2
〈J(X × Y ), Z〉 +

1

2
〈J ◦ J(X × Y ), Z〉 .

Next we apply the formula for the covariant derivative ∇gJ . Then we obtain

2 〈(∇XJ)Y, Z〉 = 〈X × Y, Z〉 − 〈J(X × JY ), Z〉 .

Since N and X, Y are orthogonal, the sume of the right side vanishes. Indeed, we have

〈J(X ×JY ), Z〉) = 〈N × (X × (N ×Y )), Z〉 = −〈N × (N × (X ×Y )), Z〉 = 〈(X ×Y, Z〉 .

The computation proves that the connection ∇ is a metric connection preserving the almost
complex structure J . Moreover, its tosion

T c(X, Y, Z) = −〈J(X × Y ), Z) = −〈N, (X × Y ) × Z〉

is skew symmetric. Consequently, ∇ is the canonical (characteristic) connection of the
naturally reductive and nearly Kähler space G2/SU(3). �
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By a theorem of Butruille [B05], no other nearly Kähler structure on S6 can be homogeneous.
In fact he proved that the only homogeneous nearly Kähler 6-manifolds are S6, S3×S3, CP

3

and the flag manifold F2 with their standard metrics.

5. G-structures and connections with skew symmetric torsion

The connection defined above can be described from the point of view of G-structures. Let
G be a closed Lie subgroup of SO(n) and let so(n) = g⊕m be the corresponding orthogonal
decomposition of the Lie algebra so(n). Then a G-structure on Riemannian manifold M
is a reduction R of its frame bundle, which is principal SO(n)-bundle, to the subgroup G.
As the Levi-Civita connection is a 1-form with values in so(n), using the decomposition
so(n) = g⊕m, we get a direct sum decomposition of its restriction to R into a connection in
principal G-bundle R and a term Γ corresponding to m. Γ is a 1-form on M with values in
the associated bundle R×Gm and is called the intrinsic torsion. It measures the integrability
of G-structure; the structure is integrable if and only if Γ = 0. At a fixed point, Γ is an
element of the G-representation Rn ⊗ m. Moreover, one can show that in any case when G
is the isotropy group of some tensor T the algebraic G-types of Γ correspond to algebraic
G-types of ∇gT (see [F03]; we also recommend [Agr06] as a suitable review on characteristic
connections). We are looking again for metric connections with skew torsion and preserving
the fixed G-structure. If it exists, it is called the characteristic torsion of the fixed G-type
and we denote by T c. However, not all G-structures admit such a connection. The question
whether or not a certain G-type admits a characteristic connection can be decided using
representation theory. Indeed, consider the G-morphism

Θ : Λ3(Rn) −→ R
n ⊗ m , Θ(T ) :=

n∑

i=1

ei ⊗ pr
m
(ei T ) .

Theorem 1 ([F03]). A G-structure of a Riemannian manifold admits a characteristic con-
nection if and only if the intrinsic torsion Γ belongs to the image of Θ. In this case the
characteristic torsion T and the intrinsic torsion are related by the formula 2 · Γ = −Θ(T ).

6. Gray-Hervella classification

Let (M, g, J) be 6-dimensional almost Hermitian manifold. Then the corresponding U(3)-
structure is given by the Lie algebra decomposition so(6) = u(3) ⊕ m6. One can directly
compute the decomposition of R6 ⊗ m6. The U(3)-representation R6 ⊗ m6 splits into four
irreducible representations,

R
6 ⊗ m6 = W1 ⊕W2 ⊕W3 ⊕W4 .

These are the basic classes of U(3)-structures in the Gray-Hervella classification. The man-
ifolds of type W1 are exactly the nearly Kähler manifolds. On the other side, the U(3)-
representation Λ3(R6) splits into three irreducible components,

Λ3(R6) = W1 ⊕W3 ⊕W4 .

The reader can find an explicit description of these decompositions in the paper [AFS05].
Together, this allows us to describe more explicitly the U(3)-structures admitting a charac-
teristic connection:
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Corollary 6.1 ([FI02]). A U(3)-structure admits a characteristic connection if and only if
the W2-component of the intrinsic torsion vanishes.

Let us finally summarize some results of Gray and Kirichenko on nearly Kähler manifolds
in dimension 6. A nearly Kähler manifold is said to be of constant type if there exists a
positive constant α such that for all vector fields

‖(∇g
XJ)(Y )‖2 = α[‖X‖2‖Y ‖2 − g(X, Y )2 − g(JX, Y )2].

Theorem 2 ([G76]). Let (M, g, J) be a 6–dimensional nearly Kähler manifold that is not
Kähler. Then

ii) M is of constant type,
iii) g is an Einstein metric on M ,
iv) the first Chern class of M vanishes.

Theorem 3 ([Ki77]). The characteristic torsion of a nearly Kähler 6-manifold is parallel
with respect to the characteristic connection, ∇cT c = 0.

7. Spinorial approach

There is another characterization of 6-dimensional nearly Kähler manifolds due to R.
Grunewald, involving the existence of so called real Killing spinors ([Gru90], see also [BFGK91]).
Let us first introduce basic facts and definitions. The real Clifford algebra in dimensions 6
is isomorphic to End(R8). The spin representations is real, 8-dimensional and we denote it
by ∆ := R8. By fixing an orthonormal basis e1, . . . , e6 of the Euclidean space R6, one choice
for the real representation of the Clifford algebra on ∆ is

e1 = +E18 + E27 − E36 − E45, e2 = −E17 + E28 + E35 − E46,

e3 = −E16 + E25 − E38 + E47, e4 = −E15 − E26 − E37 − E48,

e5 = −E13 − E24 + E57 + E68, e6 = +E14 − E23 − E58 + E67,

where the matrices Eij denote the standard basis elements of the Lie algebra so(8), i. e.
the endomorphisms mapping ei to ej, ej to −ei and everything else to zero. The spin
representation admits a Spin(6)-invariant complex structure J : ∆ → ∆ defined be the
formula

J := e1 · e2 · e3 · e4 · e5 · e6.

Indeed, J2 = −1 and J anti-commutes with the Clifford multiplication X · φ by vectors
X ∈ R

6 and spinors φ ∈ ∆; this reflects the fact that Spin(6) is isomorphic to SU(4). The
complexification of ∆ splits,

∆ ⊗R C = ∆+ ⊕ ∆−,

a consequence of the fact that J is a real structure making (∆, J) complex-(anti)-linearly
isomorphic to either ∆±, via φ → φ ± i · J(φ). Furthermore, any real spinor 0 6= φ ∈ ∆
decomposes ∆ into three pieces,

∆ = Rφ ⊕ R J(φ) ⊕ {X · φ : X ∈ R
6}.

In particular, J preserves the subspaces {X · φ : X ∈ R6} ⊂ ∆, and the formula

Jφ(X) · φ := J(X · φ)
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defines an orthogonal complex structure Jφ on R6 that depends on the spinor φ. Moreover,
the spinor determines a 3-form by means of

ωφ(X, Y, Z) := −(X · Y · Z · φ , φ)

where the brackets indicate the inner product on ∆. The pair (Jφ, ωφ) is an SU(3)-structure
on R6, and any such arises in this fashion from some real spinor. All this can be summarized
in the known fact that SU(3)-structures on R6 correspond one-to-one with real spinors of
length one (mod Z2),

SO(6)/SU(3) = P(∆) = RP
7 .

These formulas proves the following

Proposition 7.1. Let M be a simply connected Riemannian spin manifold. Then the SU(3)-
structures on M correspond to the real spinor fields of length one defined on M.

The different types of SU(3)-structures in the sense of Gray-Hervella can be characterized
by certain spinoral field equation for the defining spinor φ. The first result of this type
has been obtained by R. Grunewald in 1990. A spinor field φ defined on a Riemannian
spin manifold is called a real Killing spinor if it satisfies the following first order differential
equation

∇g
Xφ = λ · X · φ , λ = const ∈ R .

If λ = 0, the spinor field is simply parallel. Real Killing spinors are the eigenspinors of the
Dirac operator realizing the lower bound of the Dirac spectrum given by Th. Friedrich in
1980, see [F80]. Now we can formulate the mentioned result:

Theorem 4. (see [Gru90]) Let (M, g) be a 6-dimensional spin manifold admitting a non-
trivial real Killing spinor. Then M is nearly Kähler. Conversely, any simply connected
nearly Kähler 6-manifold admits non-trivial Killing spinor.

We sketch the proof of the first statement. Suppose that φ is a Killing spinor, ∇g
Xφ = X ·φ.

We differentiate the equation Jφ(X) · φ = J(X · φ) :

∇g
Y (Jφ(X)) · φ + Jφ(X) · ∇g

Y φ = J(∇g
Y X · φ) + J(X · ∇g

Y φ) = Jφ(∇
g
Y X) · φ + J(X · ∇g

Y φ) .

This formula yield the derivative ∇gJφ :

(∇g
Y Jφ)(X) · φ = J(X · ∇g

Y φ) − Jφ(X) · ∇g
Y φ = J(X · Y · φ) − Jφ(X) · (Y · φ) .

In particular, for X = Y we obtain

(∇g
XJφ)(X) · φ = −‖X‖2J(φ) − Jφ(X) · X · φ = −‖X‖2J(φ) + X · Jφ(X) · φ

= −‖X‖2J(φ) + X · J(X · φ) = −‖X‖2J(φ) − X · X · J(φ) = 0 .

Finally, the almost complex structure Jφ is nearly Kähler.

Remark 7.1. The spinor field equations for all other types of SU(3)-structures have been
discussed in the paper [ACFH15] .

Example 7.1. The 6-dimensional sphere admits real Killing spinors. Indeed, fix a constant
spinor in the Euclidean space R7 and restrict it to S6. Then it becomes a real Killing spinor
on the sphere. Moreover, this spinor defines its standard nearly Kähler structure described
before.
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8. Non-homogeneous nearly Kähler manifolds

Although it had been widely believed that non-homogeneous nearly Kähler manifolds
should exist, their explicit construction was an open problem for many years–their odd-
dimensional siblings, nearly parallel G2-manifolds, had been much less reluctant to provide
inhomogeneous examples. On the path to a solution, several approaches had been tried that
provided new insights into the shape and properties of nearly Kähler manifolds, but had not
brought the answer to the original problem. For example, nearly hypo structures allow the
construction of compact nearly Kähler structures with conical singularitie [FIMU08], and
infinitesimal deformations of nearly Kähler structures lead to interesting spectral problems
on Laplacians [MS11]. Local homogeneous non-homogeneous examples of nearly Kähler
manifolds were described in [CV15].

The main breakthrough was obtained very recently by Foscolo and Haskins [FH17], which
we shall now shortly describe as it relates directly to our object of investigation, S6:

Theorem 5 (Foscolo, Haskins). There exists a non-homogeneous nearly Kähler structure on
S6 and on S3 × S3.

These are the first example of non-homogeneous compact nearly Kähler 6-manifolds.
Recall that Butruille [B05] showed that the only homogeneous compact nearly Kähler 6-
manifolds are S6, S3×S3, CP

3 and the flag manifold F2. The examples of L. Foscolo and M.
Haskins are based on weakening of the assumption of homogeneity: they are cohomogeneity
one, i.e., they admit an isometric action of a compact Lie group such that generic orbits of
the action are of codimension one. The Lie group considered in this case is SU(2) × SU(2)
and the generic orbits are S2 ×S3 which is motivated by results of Podesta and Spiro [PS12]
characterizing all possible groups and orbits for cohomogeneity one nearly Kähler. In fact
L. Foscolo and M. Haskins state the following conjecture.

Conjecture 1. The only simply connected cohomogeneity one compact nearly Kähler man-
ifolds in dimension 6 are the spaces found in [FH17] on S6 and S3 × S3.

For proof of Theorem 5 they use another, equivalent (see for example [R93]) description
of nearly Kähler 6-manifolds.

Proposition 8.1. A 6-dimensional manifold (M, g, J) is nearly Kähler if and only if there
exists a three holomorphic form ω ∈ Λ3,0 and a constant a such that the following conditions
hold

dΩ = 12 a Re(ω) , dIm(ω) = a Ω ∧ Ω ,

where Ω = g(J ·, ·) is the Kähler form.

This approach can be used to make explicit relation between nearly Kähler 6-manifolds
and manifolds with G2 holonomy which could have been suggested by the construction of the
structure on S6 from imaginary octonions. To see this, consider a 7-dimensional Riemannian
cone C(M) over a smooth compact 6-manifold M and assume that the holonomy of C(M)
is contained in G2. Then, C(M) is equipped with a G2 structure, i.e., a 3-form ϕ and its
Hodge dual ∗ϕ with special properties. On the level 1 of the cone (which can be identified
with M) ϕ and ∗ϕ induce SU(3) structure (ω, Ω) satisfying nearly Kähler conditions from
Proposition 8.1.
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The main idea of the proof is to consider so-called nearly hypo structures which are
the SU(2) structures induced on oriented hypersurfaces of nearly Kähler 6-manifolds from
SU(3)-structures. They describe the space of nearly hypo structures on S2 × S3 invariant
under SU(2) × SU(2) action showing that it is a smooth connected 4-manifold. Away from
singular orbits, cohomogeneity one nearly Kähler manifolds correspond to curves on this
space satisfying some ODE equations. It turns out that there is a 2-parameter family of
solutions of the ODE, and to finish the proof they found conditions under which the solutions
extend to compact nearly Kähler 6-manifold. It is important to note that this is closely
related with desingularizations of Calabi-Yau conifold.
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