
JEAN-PIERRE BOURGUIGNON, OUSSAMA HIJAZI, JEAN-LOUIS

MILHORAT, ANDREI MOROIANU AND SERGIU MOROIANU, ”A

SPINORIAL APPROACH TO RIEMANNIAN AND CONFORMAL

GEOMETRY”

THOMAS FRIEDRICH

In 1928, P. A.M. Dirac introduced the differential equation for the state function of
a particle with spin 1

2 , see [6]. He argued as follows: Consider a free classical particle

in R
3 obeying the laws of special relativity. Its mass m, energy E and momentum

p = vm√
1−v2/c2

satisfy the well-known relation

E =
√

c2p2 + m2c4.

Quantizing the particle, the energy as well as the momentum are to be replaced by the
differential operators

E −→ ih
∂

∂t
, p −→ −ih grad,

respectively. The state function ψ of the particle is thus a solution of the equation

ih
∂ψ

∂t
=

√

c2h2∆ + m2c4 ψ

involving the 3-dimensional Laplacian ∆, and leading to the question how this square
root should be understood. Let us look for a square root D =

√
∆ of the Laplacian

∆ = −
∑n

i=1
∂2

∂x2

i

in arbitrary dimension. The assumption that D should be a first

order differential operator with constant coefficients leads to the ansatz

D =

n
∑

i=1

γi
∂

∂xi
,

where the coefficients γi satisfy the conditions

(∗) γiγj + γjγi = − 2 δij .

Consequently, the state function ψ has to be a vector valued function, with values in
a complex vector space admitting linear transformations γi with property (∗). This

is the so called space of spinors, of dimension 2[n/2]. However, this space is not a
representation of the group SO(n), but only of its universal covering Spin(n). Locally
this is not a problem, but globally it has remarkable consequences.

In 1932 E. Schrödinger studied locally ”das Diracsche Elektron” on semi-Riemannian
manifolds [20]. In particular he compared the square of the Dirac operator D with the
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Laplacian and observed that there is a difference term depending on the scalar curvature
R of the manifold,

D2 = ∆ +
1

4
R.

Interestingly, E. Schrödinger was very well aware that he had obtained an important
formula. His paper ends with the following comment:

Das zweite Glied scheint mir von erheblichem theoretischen Interesse. Es ist freilich

um viele, viele Zehnerpotenzen zu klein, um etwa das Glied rechter Hand ersetzen zu

können. Denn µ ist die reziproke Compton-Wellenlänge, ungefähr 1011cm−1. Immerhin

scheint es bedeutungsvoll, dass in der verallgemeinerten Theorie überhaupt ein mit dem

rätselhaften Masseglied gleichartiges ganz von selber angetroffen wird.

A Dirac operator cannot be defined globally on any oriented Riemannian mani-
fold Mn. Indeed, one needs a complex vector bundle equipped with endomorphisms
γi (1 ≤ i ≤ n) satisfying the algebraic relations (∗). This restricts the topological
type of the manifold, the first and second Stiefel-Whitney classes have to vanish (so
called spin manifolds). For example, all odd-dimensional complex projective spaces are
spin, whereas the even-dimensional ones are not spin. At the Arbeitstagung in 1962,
M. F. Atiyah introduced mathematically rigorously the Dirac operator as a first order
elliptic operator for Riemannian spin manifolds and discussed the index [2]. Since then
it has become one of the basic elliptic operators in analysis, geometry, representation
theory and topology.

Shortly after, A. Lichnerowicz used the Dirac operator together with the general
index formula for the proof that the Â-genus of a compact Riemannian spin manifold of
dimension divisible by 4 and with positive scalar curvature vanishes [17]. This has been
the first known obstruction to the existence of metrics with positive scalar curvature. A.
Lichnerowicz – not being aware of the result of Schrödinger – computed once again the
square of the Dirac operator. If the scalar curvature is positive, there are no harmonic
spinors, i. e. the index is zero. N. Hitchin generalised this result to any dimension
[13]. Moreover, he explained many properties of the Dirac operator depending on the
underlying Riemannian metric and he computed some spectra explicitly. In particular
”he discovered that, in contrast with the Laplacian on exterior forms, the dimension of
the space of harmonic spinors is a conformal invariant which can (dramatically) change
with the metric” (page 5 of the reviewed book).

Since the beginning of the 70ties the Dirac operator plays an important role in
representation theory, see [21], [19]. On a Riemannian symmetric space the Dirac
operator is an invariant differential operator and one can compare its square D2 with
the Casimir operator Ω. One obtains a new formula different from the Schrödinger-
Lichnerowicz formula,

D2 = Ω +
1

8
R.

This so-called Parthasarathy formula yields an effective method for the computation of
the Dirac spectrum of compact Riemannian symmetric spaces.

The Schödinger-Lichnerowicz formula bounds the eigenvalues λ of the Dirac operator
of a compact spin manifold by λ2 ≥ Rmin/4, where Rmin denotes the minimum of the
scalar curvature. In 1980 Th. Friedrich observed that this estimate is never optimal in
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case Rmin > 0. Indeed, the optimal inequality reads [7]

λ2 ≥ n

4(n− 1)
Rmin.

On spheres this lower bound is really an eigenvalue of D2. In the mentioned pa-
per an example is given of an Einstein metric on the 5-dimensional Stiefel manifold
SO(4)/SO(2) for which the lower bound is again a Dirac eigenvalue, i. e. an Obata-
type theorem known for Laplacians does not hold for this Dirac estimate. Instead, one
proves that if the lower bound is an eigenvalues of D2, then the space must be Einstein
and the eigenspinor ψ satisfies the real Killing spinor equation [7],

∇Xψ =
1

2

√

R

n(n− 1)
X · ψ,

where X · ψ denotes the Clifford multiplication of the spinor ψ by the vector X.
Spaces with real Killing spinors and their link to special geometric structures have
been investigated in dimensions 4 ≤ n ≤ 8 by Friedrich/Kath, Grunewald, see [9],
[10], [11], [14]. Sasaki-Einstein manifolds in all odd dimensions admit Killing spinors,
see Friedrich / Kath [10]. Unfortunately, the authors of the present book didn’t include
these articles in their list of references nor in their exposition, thus giving an incomplete
picture in Section 8.3. Some years later C. Bär proved in higher dimensions n ≥ 9 the
converse: except spheres in all dimensions, only Sasaki-Einstein manifolds admit real
Killing spinors [3].

Following an invitation of Jean-Pierre Bourguignon, I visited the École Polytechnique
in spring 1984. At that time Oussama Hijazi was his PhD student. Both were looking
for a conformal estimate for Dirac operators in order to get a refinement of the lower
Dirac bound [12]. The estimate depends on the lowest eigenvalue µ1(M

n, g) of the
conformal Laplacian (Yamabe operator),

λ2 ≥ n

4(n− 1)
µ1(M

n, g).

Moreover, they observed that a compact Riemannian manifold with a Killing spinor
cannot admit parallel forms (Theorem 5.17 of the present book). In particular, this
implies for Kähler manifolds that the previous lower bound can never be an eigenvalue
of the Dirac operator. The optimal lower bound for Kähler manifolds was proved by
K.-D. Kirchberg [15, 16]. Ten years later, Kramer / Semmelmann /Weingart obtained
the optimal lower Dirac bound for quaternionic Kähler manifolds.

A. Lichnerowicz added a new idea to the discussed topic in 1987 [18]. He considered
the second universal first order differential operator acting on spinors, the so called
twistor operator. Its kernel is a conformal invariant and consist of all spinor field ψ
satisfying the differential equation

∇Xψ +
1

n
X ·Dψ = 0.

Real and imaginary Killing spinors are special solutions of the twistor equation. In [18]
and [8] the authors studied the solutions of the twistor equation in more details. In
particular, such a spinor field vanishes only in isolated points, and outside this discrete
set the twistor spinor is conformally equivalent to a Killing spinor or a parallel spinor.
Complete Riemannian manifolds with imaginary Killing spinors are warped products
of a manifold with parallel spinors and R, see [4], [5].
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This is the background—roughly until 1990—of the present book on Dirac operators
in geometry. Most of the results described above are treated in it. There are several
other textbooks on the subject, for example Baum /Friedrich / Grunewald /Kath 1991,
Friedrich 2000 and Ginoux 2009. During the last 25 years, the number of publications
in the topic increased drastically and the new book contains some of these further
results.

The first part ”Basic spinorial material” of the book introduces a beginner into Clif-
ford algebras, representations of the spin group, spin structures on manifolds, properties
and examples of Dirac and twistor operators. The reader finds here many basic formu-
las with complete proofs, for example the Schrödinger-Lichnerowicz formula. There is a
section on pseudo-differential operators on compact manifolds without boundary in gen-
eral and on spectral properties of self-adjoint elliptic operators specifically. Alltogether,
these 110 pages are a self-contained presentation of the basic algebraic, geometric and
analytic ingredients needed for the study of Dirac operators. The material can be used
for a basic course introducing into the spin geometry.

The second part of the book is devoted to lower eigenvalue estimates of the Dirac
operator on closed spin manifolds. The already discussed inequalities of Friedrich
(1980), Hijazi (1986), Kirchberg (1986), Kramer /Semmelmann /Weingart (1998) and
Moroianu /Ornea (2004) are completely proved, sometimes with different arguments
than in the original publications. Moreover, using the integral formulas in each case
one can derive the first order differential equation for a spinor field being an eigenspinor
with the lowest possible eigenvalue. These spinorial field equations are stronger then the
eigenvalue equation (Killing spinors, Kählerian Killing spinors etc.) and the existence
of such an extremal eigenspinor restricts the underlying geometry rather severely. The
discussion of the integrability conditions for Killing spinors in the general Riemannian
case, the Kähler case as well as the quaternionic-Kähler case is the contents of the third
part ”Special spinor fields and geometries” of the book. Finally one obtains a descrip-
tion of Riemannian manifolds with Killing spinors (see above), of Kähler manifolds with
Kählerian Killing spinors / twistors (Kirchberg 1988 in complex dimension 3, Friedrich
1993 in complex dimension 2, Moroianu 1995 in higher dimensions) and last not least of
the possible quaternionic-Kähler manifolds (Kramer / Semmelmann / Weingart 1998).

The last part ”Dirac spectra of model spaces” of the book is of different flavour. The
aim is the explicit computation of the Dirac spectrum for some compact Riemannian
symmetric spaces. Using the Parthasarathy formula discussed above and the Peter-
Weyl theorem for homogeneous vector bundles, the Dirac spectrum can be computed via
the representation theory of the isometry group of the symmetric space. Consequently,
the authors give a brief survey of the representations for some classical groups and
compute finally the Dirac spectra on spheres and projective spaces.

The book is an interesting introduction into Dirac operators on compact Riemannian
manifolds. It is self-contained and may serve as a guideline for everybody working in
Differential Geometry or Mathematical Physics. All the Dirac operators discussed
therein depend on torsion-free connections. Since 15 years Dirac operators, depending
on more general metric connections with non-trivial torsion play an important role
in Differential Geometry and Mathematical Physics. Many of the results contained
in the present book have been discussed in this more general situation. These Dirac
operators are used in order to understand non-integrable geometries and occur in string
theory, see [1]. In other words, the topic of the present book is still an active area in
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Differential Geometry and Mathematical Physics with many new results and interesting
open questions.
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