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Compactification	and	dualities


10-dim		=		R4 x

Superstring	theory	–	effective	theory	in	4-dim	follows	from	
compactification	of	10-dim	string	theory	on	a	Calabi-Yau	manifold.	

(Beyond)	Standard	Model	theory
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Polynomial	knot	invariants	from	Wilson	loop	observables:	

HOMFLY-PT	polynomial	for	SU(N)	gauge	group:

Jones	polynomial	for	SU(2),	Alexander	polynomial	for	a=1

Chern-Simons	gauge	theory	–	3-dim	TQFT	[Witten,	1989]:	

Chern-Simons	theory



T*S3

Singular	conifold:

x2	+	y2	+	z2	+	w2	=	0

Topological	strings	and	open-closed	duality

Chern-Simons	theory	on	S3	arises	as	an	effective	description	of	A-model	open	

topological	string	theory	in	deformed	conifold	T*S3,	with	appropriate	boundary	
conditions	(N	branes)	on	S3	(Witten,	1993).
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Knots-quivers	correspondence
Kucharski-Reineke-Stosic-PS	(arXiv:	1707.02991,	1707.04017)


BPS	states	enumerated	by	LMOV	invariants	are	bound	states	of	
certain	“elementary”	states,	whose	interactions	are	encoded	in	a	
quiver	diagram.	Nodes	of	a	quiver	correspond	to	those	
“elementary”	states,	and	arrows	to	interactions.


Calabi-Yau

description


Spacetime

description
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Recall	–	colored	HOMFLY-PT	polynomials	arise	as	Euler	
characteristics	of	coloured	HOMFLY-PT	homologies:
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Homological	diagram	

for	figure-8	knot Relation	to	quivers:



Examples

Colored	polynomial	for	trefoil:



Examples

Colored	polynomial	for	trefoil:

Quiver	form	follows	from:

We	find:



Examples	–	torus	knots

Colored	polynomial	for	trefoil:

Quiver	form	follows	from:

We	find:

(2,5)	torus	knot:



Examples	–	torus	knots
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Examples	–	63	knot



Quivers	determined	for:

- all	knots	up	to	6	crossings

- (2,2p+1)	torus	knots,	for	all	p

- (2,2p)	torus	links

- (3,3p+1)	and	(3,3p+2)	torus	knots

- an	infinite	family	of	twist	knots

- an	infinite	family	of	rational	and	arborescent	knots	 

(Stosic-Wedrich)



How	unique	is	the	correspondence?





Local	equivalence
arXiv:	2105.11806
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Proof:	follows	from	comparison	of	quiver	generating	series	P(x)	

for	Q	and	Q’.	Agreement	at	the	order	x2	leads	to	the	center	of	mass

condition	(i.e.	the	center	of	mass	for	nodes	(a,b)	coincides	with	the	
center	of	mass	for	nodes	(c,d)).
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Proof:	follows	from	comparison	of	quiver	generating	series	P(x)	

for	Q	and	Q’.	Agreement	at	the	order	x2	leads	to	the	center	of	mass

condition	(i.e.	the	center	of	mass	for	nodes	(a,b)	coincides	with	the	
center	of	mass	for	nodes	(c,d)).

Agreement	at	the	order	x3	leads	to	the	conditions	of	the	form:

The	agreement	at	the	order	x3	asserts	the	agreement	to	all	orders,

as	follows	from	the	multi-cover	skein	relation.	

[Ekholm-Kucharski-Longhi,	arXiv:	1910.06193]



Local	equivalence
Verifying	systematically	conditions	from	the	above	theorem,	we	can

identify	all	equivalent	quivers	associated	to	a	given	knot.	
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It	follows	that	various	identifications	of	indices	lead	

to	a	permutohedron	of	equivalent	quivers!		
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Global	structure
Such	structures	arise	from	the	following	formula	for

	

(or	its	generalizations):	

Such	form	of	quiver	generating	functions	follows	from	

constraints	in	the	local	equivalence	theorem.	



Global	structure
We	refer	to	the	subquiver	mentioned	above	as	a	``prequiver’’.	

The	full	quiver	is	determined	from	a	sub	quiver	by	permutation	

and	a	pair	of	integers	(k,l),	in	the	operation	called	``splitting’’.



Global	structure

In	general,	there	are	several	equivalent	formulas	for	a	given	

HOMFLY-PT	generating	function,	and	each	of	them	gives	rise	

to	one	permutohedron.	Altogether	we	obtain	a	large	

permutohedron	graph.



Global	structure	–	examples

In	this	case	permutohedron	graph	is	made	of	3	permutohedra	∏3.
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Global	structure	–	examples
For	(2,2p+1)	torus	knots,	permutohedron	graph	is	made	of	two	

chains	of	larger	and	larger	permutohedra.
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chains	of	larger	and	larger	permutohedra.
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For	(2,2p+1)	torus	knots,	permutohedron	graph	is	made	of	two	

chains	of	larger	and	larger	permutohedra.
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For	(2,2p+1)	torus	knots,	permutohedron	graph	is	made	of	two	

chains	of	larger	and	larger	permutohedra.
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Summary

- Knots-quivers	correspondence,	motivated	by	string	theory,	
relates	knot	theory	and	quiver	representation	theory	


- It	turns	out	that	many	quivers	may	be	associated	to	a	given	knot	

- They	are	parametrized	by	vertices	of	a	permutohedron	graph

- This	indicates	some	interesting	structure	of	the	underlying	

HOMFLY-PT	homology,	and	of	the	corresponding	LMOV	(motivic	
DT)	invariants



Summary

Future	directions	and	related	developments:

- identify	permutohedra	for	rational	and	arborescent	knots	

(following	Stosic-Wedrich,	arXiv:	1711.03333,	2004.10837)

- develop	open	topological	string	interpretation	(following	Ekholm-

Kucharski-Longhi,	arXiv:	1811.03110,	1910.06193)

- conduct	analogous	analysis	for	other	underlying	toric	Calabi-Yau	

manifolds	(following	Kimura-Panfil-Sugimoto-PS	,	arXiv:	
1811.03556,	2011.06783)


