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ABSTRACT: The knots-quivers correspondence states that various characteristics of a knot
are encoded in the corresponding quiver and the moduli space of its representations. How-
ever, this correspondence is not a bijection: more than one quiver may be assigned to
a given knot and encode the same information. In this work we study this phenomenon
systematically and show that it is generic rather than exceptional. First, we find condi-
tions that characterize equivalent quivers. Then we show that equivalent quivers arise in
families that have the structure of permutohedra, and the set of all equivalent quivers for
a given knot is parameterized by vertices of a graph made of several permutohedra glued
together. These graphs can be also interpreted as webs of dual 3d A/ = 2 theories. All these
results are intimately related to properties of homological diagrams for knots, as well as
to multi-cover skein relations that arise in counting of holomorphic curves with boundaries
on Lagrangian branes in Calabi-Yau three-folds.



Permutohedron

Permutohedron: (n-1)-dimensional polytope whose vertices represent
permutations of n objects, and edges correspond to transpositions of
adjacent neighbours.




Permutohedron

Permutohedron: (n-1)-dimensional polytope whose vertices represent
permutations of n objects, and edges correspond to transpositions of
adjacent neighbours.

(2,3,1) (2,1,3)

e (1 3)
(3,2,1) (1,2,3) o (2 3)

(12)

(37]-,2) (1’3’2)



- E— j\
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Permutohedra for knots and quivers

Permutohedra graphs — graphs made of several permutohedra,
whose vertices represent equivalent quivers associated to knots.
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Superstring theory — effective theory in 4-dim follows from
compactification of 10-dim string theory on a Calabi-Yau manifold.

10-dim =

(Beyond) Standard Model theory



Interesting toy models, which lead to deep statements in mathematics:
compactification of 6-dim M5-branes on lower-dimensional manifolds.
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Interesting toy models, which lead to deep statements in mathematics:
compactification of 6-dim M5-branes on lower-dimensional manifolds.

Alday-Gaiotto-Tachikawa (AGT) duality: compactification on a Riemann surface

6-dim = R4 x @K

N=2 SUSY gauge théory 2-dim CFT amplitudes
(Liouville, Toda)

3d-3d correspondence:

6-dim = RS (3-manifold)

N=2 SUSY gauge theory(




Chern-Simons gauge theory — 3-dim TQFT [Witten, 1989].
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Chern-Simons gauge theory — 3-dim TQFT [Witten, 1989].

Jones polynomial for SU(2), Alexander polynomial for a=1



Topological strings and open-closed dualit 1
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Chern-Simons theory on S3 arises as an effective description of A-model open
topological string theory in deformed conifold T*S3, with appropriate boundary

conditions (N branes) on S3 (Witten, 1993).

Singular conifold:
X2+y2+2722+w2=0

T*s3
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Topological strings and open-closed dualit
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Chern-Simons theory on S3 arises as an effective description of A-model open
topological string theory in deformed conifold T*S3, with appropriate boundary
conditions (N branes) on S3 (Witten, 1993).

' Gromov-Witten |

Chern-Simons !

~
SJ

After a geometric transition, in the 't Hooft limit, T*S3 is replaced by the resolved
conifold X (with non-trivial S2), N branes disappear, and we are left with A-model
closed topological string theory (Gopakumar-Vafa, 1998).
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Chern-Simons theory on S3 arises as an effective description of A-model open

topological string theory in deformed conifold T*S3, with appropriate boundary
condmons (N branes) on S3 (Witten, 1993).

' Gromov-Witten |
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After a geometric transition, in the 't Hooft limit, T*S3 is replaced by the resolved
conifold X (with non-trivial S2), N branes disappear, and we are left with A-model
closed topological string theory (Gopakumar-Vafa, 1998).

Knots arise once we introduce an extra lagrangian brane, which intersects S3,
along a knot K. This brane survives the geometric transition.



Embed the above system in M-theory. Chern-Simons theory on S3 engineered
by N M5-branes in deformed conifold T*S3. A knot K engineered by extra
M5-branes on lagrangian Lx. What is effective SUSY theory in 3 spacetime dimensions?

space-time : R x T*S°® x My
N M5-branes : R x 8 x D
Mb5-branes : R x Lg X D



M-theory, knots and BPS states

Embed the above system in M-theory. Chern-Simons theory on S3 engineered
by N M5-branes in deformed conifold T*S3. A knot K engineered by extra
M5-branes on lagrangian Lx. What is effective SUSY theory in 3 spacetime dimensions?

space-time : R x T*S% x My
N M5-branes R x S8 x D
Mb-branes : R x Lg X D
After the geometric transition we are left with an extra M5-brane in resolved conifold
space-time : R x X x M,
Mb5-branes : RxLg xD

Knot invariants of K, computed by Chern-Simons theory on the initial S3,
are encoded in (conjecturally) integral BPS invariants (Labastida-Marino-
Ooguri-Vafa, 2000) in the effective SUSY theory on (R x D).



Embed the above system in M-theory. Chern-Simons theory on S3 engineered
by N M5-branes in deformed conifold T*S3. A knot K engineered by extra
M5-branes on lagrangian Lx. What is effective SUSY theory in 3 spacetime dimensions?

space-time : R x T*S% x My
N M5-branes R x S8 x D
Mb-branes : R x Lg X D
After the geometric transition we are left with an extra M5-brane in resolved conifold
space-time : R x X x M,
Mb5-branes : RxLg xD

Knot invariants of K, computed by Chern-Simons theory on the initial S3,
are encoded in (conjecturally) integral BPS invariants (Labastida-Marino-
Ooguri-Vafa, 2000) |n the effective SUSY theory on (R x D).

7T = Z Pi(a, qg)x = H (1 — ra’qJ+2’~+1) e

r=>0 r>1:2,7:k>0



Brane amplitude as generating function of colored polynomials:
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Brane amplitude as generating function of colored polynomials:

= 1

. . ) JAin o Nr,i,'
For symmetric representations: P(z) = H (1 — :cra‘q1+2’~+1) i
r>13i,5;k>0
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Brane amplitude as generating function of colored polynomials:

|

. . w gam X Nr,i,'
For symmetric representations: P(z) = || (1 - xrazqﬁgul) ;
r>1;,5:k>0
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Knots-quivers correspondence




Kucharski-Reineke-Stosic-PS (arXiv: 1707.02991, 1707.04017)

BPS states enumerated by LMOV invariants are bound states of
certain “elementary” states, whose interactions are encoded in a
quiver diagram. Nodes of a quiver correspond to those
“elementary” states, and arrows to interactions.

| Calabi-Yau ‘ Spacetime |
| description | ﬂ description |




Quiver representation theory

Consider moduli space of maps C% — C%., It is characterized

by motivic Donaldson-Thomas invariants: 4, 4 .; € N
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Consider moduli space of maps C% — C%., It is characterized

by motivic Donaldson-Thomas invariants: 4, 4 .; € N

(—Q)E g lC d;d; . p
Po(z1,...,Zm) = E LR i
( ) (qQ;qz) (% ¢%)a,,

- H H H (1 - e )q1+2k+1)( 17+, ....dms3

(dy,....dm)#0 FEZ k>0

o Nr i ;
Recall, foraknot:  P(z)= ] (1_l»ral-q3+2k+l)

r>151,7:k20



Consider moduli space of maps C% — C%., It is characterized

by motivic Donaldson-Thomas invariants: 4, 4 .; € N

Pl 1y Em) = s S
( ) Z (qQ;qQ) (q q) :

-l HH(I‘ )q“i”‘“)( e

(dy,....dm)#0 FEZ k>0

Recall, fora knot:  P(z)= ]| (1 _ praiqi+ 2k Wi

r>151,7:k20



With appropriate identification of variables, generating function of
colored HOMFLY-PT polynomials can be written in the form of
motivic generating function, for some particular symmetric matrix C

20 l;d; a®i d; t;d;
- z q 1 4 1
o § :P,.(a., Q)if _ E : E C jdid; d1+ A-dm H 1 ( )

dyiiniilini >0 H:n—l (g% q2)d,-

r; = za® g (—1)%



With appropriate identification of variables, generating function of
colored HOMFLY-PT polynomials can be written in the form of

motivic generating function, for some particular symmetric matrix C

lid; ad tid;
T T S 1 Ay |
Plx) = E Pra,q)x" = E - qig Ciididi pdit..tdm [TiZ: g7 ‘=1

Note: infinite number of colored polynomials / LMOV invariants
encoded in a finite number of parameters of a matrix C.
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LMOV invariants € N | Motivic DT-invariants € N
Classical LMOYV invariants | Numerical DT-invariants
Algebra of BPS states Cohom. Hall Algebra
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~ Quivers and HOMFLY-PT homology

Recall — colored HOMFLY-PT polynomials arise as Euler
characteristics of coloured HOMFLY-PT homologies:

i g k .. g7
P,(a,q) = P(a,q,-1) = ) a'q’(-1)"dimH;(K).
1,7,k

Some homological information is encoded in superpolynomials:

w T (r) (r)
P.(a,q,t) = Z aijtkdim?-i,g-k(K) = Z a’t qfi ot
2,7,k 1€9,.(K)

tf;’")
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for figure-8 knot
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Recall — colored HOMFLY-PT polynomials arise as Euler
characteristics of coloured HOMFLY-PT homologies:

i g k .. -4
P,(a,q) = P(a,q,-1) = ) a'q’(—1)"dimH;(K).
1,7,k

Some homological information is encoded in superpolynomials:

w T (r) (r) ,(r)
P.(a,q,t) = Z aijtkdimejk(K) = Z a® q% "
1,7,k 1€9,.(K)

Homological diagram °

for figure-8 knot Relation to quivers:

-2
t,gl) — ti — Cz‘,i




Examples ‘

2r T
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k
| 2k(r+1) 2 2(i—2)
| TT - a2-)

=1

Colored polynomial for trefoil: P.(a,q) = o
k=0
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We find: c¢23 =11 2 2
194
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Examples — torus knots

2r

r k
Colored polynomial for trefoil: P.(a.q) = 327_ m gkl ][RR
k=0 =1

 —

Quiver form follows from:

' q
k] Y " R = (0%50%)r—k(0% 0%)i(0% 4Pk

ETE
We find: ¢ =112 2
_123_ @
0 O SR
1 223 3
(2,5) torus knot:  ¢cms—|1 2 3 4 4
3 3 4 4 4
133445
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Quivers determined for:

all knots up to 6 crossings

(2,2p+1) torus knots, for all p

(2,2p) torus links

(3,3p+1) and (3,3p+2) torus knots

an infinite family of twist knots

an infinite family of rational and arborescent knots
(Stosic-Wedrich)



* How unlque is the correspondence?




Knot

Equivalent quivers

Unknot 04 1
31 1
51 3
71 13
9; 68
Torus knots T2,2p+1 111 405
134 2684
154 19557
(2p+ 1), ~ 2p!
44 2
Twists knots T Ky 42 61 141
81 36 555
, 5o 12
Twists knots T' Ko, 1 7, 1 083
6o 3534
Stand-alone examples 63 142 368
73 109 636




Local equival

ence
arXiv: 2105.11806

Theorem 6. Consider a quiver () corresponding to the knot K and another symmetric
quiver Q' such that Q6 = Qo and /\; =\ Vi € Qo (\; comes from the knots-quivers

change of variables). If Q and Q' are related by a sequence of disjoint transpositions, each
exchanging non-diagonal elements

Cab = Ccd7 Cba =t Cdca

for some pairwise different a,b,c,d, € (Qg, such that

)‘a)‘b = }‘c/\d
and
Cop = Ceq — 1, Cai + Op = Cs + Ggs = 05 = gy YI-€ Qs
or
Ced = Cap — 15 Cut Cgi =C4 0k = 04i =05y Y€ Qs

then @Q and Q' are equivalent in the sense of the definition 4.




Proof: follows from comparison of quiver generating series P(x)
for Q and Q'. Agreement at the order x2 leads to the center of mass
condition (i.e. the center of mass for nodes (a,b) coincides with the

center of mass for nodes (c,d)).

AaAb = AcAd
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Proof: follows from comparison of quiver generating series P(x)
for Q and Q'. Agreement at the order x2 leads to the center of mass
condition (i.e. the center of mass for nodes (a,b) coincides with the

center of mass for nodes (c,d)).

AaAb = AcAd

Agreement at the order x3 leads to the conditions of the form:
Cap = Ceq — 1, Cai + Cpi = Cei + Cgi — 0 — 04, Vi € Qo

The agreement at the order x3 asserts the agreement to all orders,

as follows from the multi-cover skein relation.
[Ekholm-Kucharski-Longhi, arXiv: 1910.06193]



Verifying systematically conditions from the above theorem, we can

identify all equivalent quivers associated to a given knot.

"0 -1 -1 0 0]
-1-2-2-1(0)
-1-2-1E0) 0
0 -1(1 1 1

0 0 0 1 2




Verifying systematically conditions from the above theorem, we can
identify all equivalent quivers associated to a given knot.

A3 e A3 A5
% *.e .'. .'.
)/)) )/S PV M3 N\ e 0\
- a o o ®
51 0 2 4 0 2 4
)\1/\5 o /\2)\3 )\3)\4 - /\2)\5
O
01132 01133 01133
12B3)33 12233 12234
13)344 12344 123@3)4
33444 33444 33(3)44
2)34 45 133445 13@W4 45




Verifying systematically conditions from the above theorem, we can
identify all equivalent quivers associated to a given knot.




Verifying systematically conditions from the above theorem, we can
identify all equivalent quivers associated to a given knot.

)\1/\5 = /\2/\3 AoA7 = )‘4)‘5
)\2)\5 = /\3)\4 /\4)\7 = /\5)‘6




Verifying systematically conditions from the above theorem, we can
identify all equivalent quivers associated to a given knot.







Instead of analyzmg guiver matrices, con5|der the structure
of auiver generating series. We find that in general it takes form

le dm -n
3 Gdid B e
PK(.’L',CL, Q7t) = (—Q)ZZ’J 7 5. 9y . m'n : Hdl,m,dn o

where C is a matrix of a subquiver, and the last piece takes form

Hcil,...,cin 3 Z Z
2 2. =2 -

2, % gue . j
(q 7q )dl (q 7q )dn d1=a1+[31 Jn=an+16n

(_q)2 Z’I,<J /Bzaj +7r2(a1a'“)a’n;ﬂl7”’7/3n)l£:81+---+/3n

(%9%) 0y (0%58%) 8, (6250, (6% 0°) 5,



Instead of analyzmg guiver matrices, con5|der the structure
of auiver generating series. We find that in general it takes form

le dm -n
PK(CU,Q, Q7t) = E (_q)zzd 7 5. 9y . m.n : chl,...,cin o
dyode 50 (% 0%)d,(a%a%)d,, ., Bi=a);

where C is a matrix of a subquiver, and the last piece takes form

M; g 3 3 (—q)? i Biog+T2(001 03B ) Bt 4B
1yeeeyUm _ v
(@%50))a, (050, g s dcoes (050 (@%67)8 (0% 0%)a, (¢ )8,

Recall: a permutation o is determined by a set of its inversions,
i.e. a set of all pairs (o(i),o(j)) such that i<j and o(i)>o()).
Such a set of inversions is encoded in the term )_;; Bi;



Instead of analyzmg guiver matrices, con5|der the structure

of quiver generating series. We find that in general it takes form
vdl dm -n

. Ciidid; Ty ***d
Pr(z,a,q,t)= )y (—q)%+s Co%d e I4,,..d

di,....dy—n =0 (q2’ qz)d1“°(q s 4 )Jm_n "lzi=z\;

where C is a matrix of a subquiver, and the last piece takes form

Hd' d Z Z O3 B15eees IBn)HIB1+"'+ﬂn
Lyeney n _ e 2
(@%0))a, (0% 0V, 5 s does (054 2o (&% PV (@5 e (5 P,

Recall: a permutation o is determined by a set of its inversions,
i.e. a set of all pairs (o(i),o(j)) such that i<j and o(i)>o()).
Such a set of inversions is encoded in the term )_;; Bi;

It follows that various identifications of indices lead
to a permutohedron of equivalent quivers!




- Global tructu re
Such structures arise from the foIIowmg formula for

g .4 "(faq Y, +..+d,,
(or its generalizations):

2
: i 7 2 2 n-1, (3 y
2(€2q )d1+2+dn2 — Z .. Z (_q)ﬂ1+...+ﬂn+2zz=1 ,Bz+1(d1+...+dz)x
(g% 9°)d, (% q%) 4,

OA1+,31 =dl an+/3n=dn

(gq—l)ﬂ1+"'+ﬂn

(%50%) 0, (@%58%) 8, (4% 6% e, (6% 6%) 5,



Such structures arise from the foIIowmg formula for

g 4 -(faq )d, +...+d.,
(or its generalizations):

2
(&9 )J1+...+Jn _ Z Z (_q)3%+---+572z+22?;11 5i+1(dl+"'+di)x
2. 2\ .. (2. 2)-
(¢%9%)a, (0% 9%)d, | G o im-d

(Sq_l )ﬂ1+"°+ﬂn

(4% 0%, (2% %) 5, (6% 0% e, (6% 0%,

Such form of quiver generating functions follows from
constraints in the local equivalence theorem.
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N Global structure

We refer to the subquiver mentioned above as a prequiver”.
The full quiver is determined from a sub quiver by permutation
and a pair of integers (k,/), in the operation called "splitting”’.

/ éss oo vsz' ! ész""hs oo ng ;ésj'i'hs\
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: I l . | : | [ |
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L L Cs_ 4y G Gtk +] T2 L O
[ Cos1et1Csit=1Cg; ) \ Cjs + hg! - G+l 1t Gtk 1G5+l
| | E | | :
_qw_:_ °_: 9_% :_’ ’L:_Cy_
I N I
\_éy:_ ‘_;éj_z’ :__:_C;J} [ Css_ _: _; __ G 1;(:783‘ T_hS_:_ i Csj 1 Coj+hs
I % | | | | |
\ G v Cu Gtk Cy (Cy+k+l
Cisthgyoy C+k | Cutl o Cythy Cy+l
o(i)>a(j) | _ & 20 DN U N AT . O SO N
LG e G Gtk o G Gtk
\ Cjs + hg'eee ' Oyt L1 Crp+ k' Oy +1




Global structure

In general, there are several equivalent formulas for a given
HOMELY-PT generating function, and each of them gives rise
to one permutohedron. Altogether we obtain a large
permutohedron graph.
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Global structure — examples

For (2,2p+1) torus knots, permutohedron graph is made of two
chains of larger and larger permutohedra.

XNy Xe = Aols ez = Xols
O
01132 01133 011337
12B3)33 12233 12234
13)344 12344 123@3)4
33444 33444 33(3)44
2)34 45 133445 13@W4 45
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For (2,2p+1) torus knots, permutohedron graph is made of two
chains of larger and larger permutohedra.
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For (2,2p+1) torus knots, permutohedron graph is made of two
chains of larger and larger permutohedra.
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Global structure — examples ?

For (2,2p+1) torus knots, permutohedron graph is made of two
chains of larger and larger permutohedra.
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Knots-quivers correspondence, motivated by string theory,
relates knot theory and quiver representation theory

It turns out that many quivers may be associated to a given knot
They are parametrized by vertices of a permutohedron graph
This indicates some interesting structure of the underlying
HOMFLY-PT homology, and of the corresponding LMOV (motivic

DT) invariants
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Summar

Future directions and related developments:
identify permutohedra for rational and arborescent knots
(following Stosic-Wedrich, arXiv: 1711.03333, 2004.10837)
develop open topological string interpretation (following Ekholm-
Kucharski-Longhi, arXiv: 1811.03110, 1910.06193)
conduct analogous analysis for other underlying toric Calabi-Yau
manifolds (following Kimura-Panfil-Sugimoto-PS, arXiv:
1811.03556, 2011.06783)
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