Permutohedra for knots and quivers

Piotr Sułkowski

Faculty of Physics, University of Warsaw

Algebra, Geometry & Physics seminar – July, 2021

Permutohedra for knots and quivers

Jakub Jankowski^{1,3}, Piotr Kucharski^{2,3}, Hélder Larraguível³, Dmitry Noshchenko³, and Piotr Sułkowski^{2,3}

¹Institute of Theoretical Physics, University of Wrocław, PL-50204 Wrocław, Poland

² Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA

³Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland E-mail: jakub.jankowski@uwr.edu.pl, piotrek@caltech.edu,

helder.larraguivel@fuw.edu.pl, dmitry.noshchenko@fuw.edu.pl, psulkows@fuw.edu.pl

ABSTRACT: The knots-quivers correspondence states that various characteristics of a knot are encoded in the corresponding quiver and the moduli space of its representations. However, this correspondence is not a bijection: more than one quiver may be assigned to a given knot and encode the same information. In this work we study this phenomenon systematically and show that it is generic rather than exceptional. First, we find conditions that characterize equivalent quivers. Then we show that equivalent quivers arise in families that have the structure of permutohedra, and the set of all equivalent quivers for a given knot is parameterized by vertices of a graph made of several permutohedra glued together. These graphs can be also interpreted as webs of dual 3d $\mathcal{N} = 2$ theories. All these results are intimately related to properties of homological diagrams for knots, as well as to multi-cover skein relations that arise in counting of holomorphic curves with boundaries on Lagrangian branes in Calabi-Yau three-folds.

Permutohedron

Permutohedron: (*n*-1)-dimensional polytope whose vertices represent permutations of *n* objects, and edges correspond to transpositions of adjacent neighbours.

Permutohedron

Permutohedron: (*n*-1)-dimensional polytope whose vertices represent permutations of *n* objects, and edges correspond to transpositions of adjacent neighbours.

Permutohedron

Permutohedron: (*n*-1)-dimensional polytope whose vertices represent permutations of *n* objects, and edges correspond to transpositions of adjacent neighbours.

Permutohedra for knots and quivers

Permutohedra graphs – graphs made of several permutohedra, whose vertices represent equivalent **quivers** associated to **knots**.

Permutohedra for knots and quivers

Permutohedra graphs – graphs made of several permutohedra, whose vertices represent equivalent **quivers** associated to **knots**.

Superstring theory – effective theory in 4-dim follows from compactification of 10-dim string theory on a Calabi-Yau manifold.

Interesting toy models, which lead to deep statements in mathematics: compactification of 6-dim M5-branes on lower-dimensional manifolds.

Interesting toy models, which lead to deep statements in mathematics: compactification of 6-dim M5-branes on lower-dimensional manifolds.

Alday-Gaiotto-Tachikawa (AGT) duality: compactification on a Riemann surface

Interesting toy models, which lead to deep statements in mathematics: compactification of 6-dim M5-branes on lower-dimensional manifolds.

Alday-Gaiotto-Tachikawa (AGT) duality: compactification on a Riemann surface

3d-3d correspondence:

6-dim = R³ × (3-manifold)

N=2 SUSY gauge theory

Chern-Simons theory 3-dim and knot invariants

Interesting toy models, which lead to deep statements in mathematics: compactification of 6-dim M5-branes on lower-dimensional manifolds.

Alday-Gaiotto-Tachikawa (AGT) duality: compactification on a Riemann surface

3d-3d correspondence:

Chern-Simons theory 3-dim and knot invariants

2d-4d correspondence: (M5's in 6-dim) = (SUSY theory in 2-dim) x (4-manifolds)

N=2 SUSY gauge theory

Interesting toy models, which lead to deep statements in mathematics: compactification of 6-dim M5-branes on lower-dimensional manifolds.

Alday-Gaiotto-Tachikawa (AGT) duality: compactification on a Riemann surface

3d-3d correspondence:

2d-4d correspondence: (M5's in 6-dim) = (SUSY theory in z-dim) x (4-manifolds)

Chern-Simons theory

Chern-Simons gauge theory – 3-dim TQFT [Witten, 1989]:

$$S = \frac{k}{4\pi} \int \operatorname{Tr}(A \wedge dA + \frac{2}{3}A \wedge A \wedge A)$$

Chern-Simons theory

Chern-Simons gauge theory – 3-dim TQFT [Witten, 1989]:

$$S = \frac{k}{4\pi} \int \operatorname{Tr}(A \wedge dA + \frac{2}{3}A \wedge A \wedge A)$$

Polynomial knot invariants from Wilson loop observables:

$$P_R(a,q) = \left\langle \operatorname{Tr}_R e^{\oint A} \right\rangle = \int \mathcal{D}A\left(\operatorname{Tr}_R e^{\oint A}\right) e^{\frac{ik}{4\pi}S}$$

Chern-Simons theory

Chern-Simons gauge theory – 3-dim TQFT [Witten, 1989]:

$$S = \frac{k}{4\pi} \int \operatorname{Tr}(A \wedge dA + \frac{2}{3}A \wedge A \wedge A)$$

Polynomial knot invariants from Wilson loop observables:

$$P_R(a,q) = \left\langle \operatorname{Tr}_R e^{\oint A} \right\rangle = \int \mathcal{D}A\left(\operatorname{Tr}_R e^{\oint A}\right) e^{\frac{ik}{4\pi}S}$$

HOMFLY-PT polynomial for SU(N) gauge group:

$$q = e^{\frac{2\pi}{k+N}}, \qquad a = q^N$$

Jones polynomial for SU(2), Alexander polynomial for a=1

Topological strings and open-closed duality

Chern-Simons theory on **S**³ arises as an effective description of A-model open topological string theory in deformed conifold *T****S**³, with appropriate boundary conditions (*N* branes) on **S**³ (*Witten, 1993*).

T*S3

Topological strings and open-closed duality

Chern-Simons theory on **S**³ arises as an effective description of A-model **open** topological string theory in deformed conifold *T****S**³, with appropriate boundary conditions (*N* branes) on **S**³ (*Witten, 1993*).

After a *geometric transition*, in the 't Hooft limit, T^*S^3 is replaced by the resolved conifold X (with non-trivial S^2), N branes disappear, and we are left with A-model **closed** topological string theory (*Gopakumar-Vafa*, 1998).

$$Z^{\text{closed}} = \exp\left(\sum_{g=0}^{\infty} g_s^{2g-2} F_g(Q)\right)$$

Topological strings and open-closed duality

Chern-Simons theory on **S**³ arises as an effective description of A-model **open** topological string theory in deformed conifold *T****S**³, with appropriate boundary conditions (*N* branes) on **S**³ (*Witten, 1993*).

After a *geometric transition*, in the 't Hooft limit, T^*S^3 is replaced by the resolved conifold X (with non-trivial S^2), N branes disappear, and we are left with A-model **closed** topological string theory (*Gopakumar-Vafa*, 1998).

Knots arise once we introduce an extra lagrangian brane, which intersects **S**³, along a knot *K*. This brane survives the geometric transition.

M-theory, knots and BPS states

Embed the above system in M-theory. Chern-Simons theory on S^3 engineered by N M5-branes in deformed conifold T^*S^3 . A knot K engineered by extra M5-branes on lagrangian L_K . What is effective SUSY theory in 3 spacetime dimensions?

space-time :	$\mathbb{R} \times T^* \mathbf{S}^3 \times M_4$
N M5-branes :	$\mathbb{R} imes \mathbf{S}^3 imes D$
M5-branes :	$\mathbb{R} \times L_K \times D$

M-theory, knots and BPS states

Embed the above system in M-theory. Chern-Simons theory on S^3 engineered by N M5-branes in deformed conifold T^*S^3 . A knot K engineered by extra M5-branes on lagrangian L_K . What is effective SUSY theory in 3 spacetime dimensions?

space-time :	$\mathbb{R} \times T^* \mathbf{S}^3 \times M_4$
N M5-branes :	$\mathbb{R} imes \mathbf{S}^3 imes D$
M5-branes :	$\mathbb{R} \times L_K \times D$

After the geometric transition we are left with an extra M5-brane in resolved conifold

space-time :	$\mathbb{R} imes X imes M_4$
M5-branes :	$\mathbb{R} \times L_K \times D$

Knot invariants of *K*, computed by Chern-Simons theory on the initial **S**³, are encoded in (conjecturally) integral BPS invariants (*Labastida-Marino-Ooguri-Vafa, 2000*) in the effective SUSY theory on (**R** x *D*).

M-theory, knots and BPS states

Embed the above system in M-theory. Chern-Simons theory on S^3 engineered by N M5-branes in deformed conifold T^*S^3 . A knot K engineered by extra M5-branes on lagrangian L_K . What is effective SUSY theory in 3 spacetime dimensions?

space-time :	$\mathbb{R} \times T^* \mathbf{S}^3 \times M_4$
N M5-branes :	$\mathbb{R} imes \mathbf{S}^3 imes D$
M5-branes :	$\mathbb{R} \times L_K \times D$

After the geometric transition we are left with an extra M5-brane in resolved conifold

space-time :	$\mathbb{R} imes X imes M_4$
M5-branes :	$\mathbb{R} \times L_K \times D$

Knot invariants of *K*, computed by Chern-Simons theory on the initial **S**³, are encoded in (conjecturally) integral BPS invariants (*Labastida-Marino-Ooguri-Vafa*, 2000) in the effective SUSY theory on (**R** x D).

$$Z^{\text{open}} = \sum_{r=0}^{\infty} P_r(a,q) x^r = \prod_{r \ge 1; i,j;k \ge 0} \left(1 - x^r a^i q^{j+2k+1} \right)^{N_{r,i,j}}$$

Brane amplitude as generating function of colored polynomials:

$$\sum_{R} P_R(a,q) \operatorname{Tr}_R V = \exp\left(\sum_{n=1}^{\infty} \sum_{R} \frac{1}{n} f_R(a^n,q^n) \operatorname{Tr}_R V^n\right)$$

with f_R enumerating bound states of D2-D4 branes:

$$f_R(a,q) = \sum_{i,j} N_{R,i,j} \frac{a^i q^j}{q - q^{-1}}, \qquad N_{R,i,j} \in \mathbb{Z}$$

Brane amplitude as generating function of colored polynomials:

$$\sum_{R} P_R(a,q) \operatorname{Tr}_R V = \exp\left(\sum_{n=1}^{\infty} \sum_{R} \frac{1}{n} f_R(a^n,q^n) \operatorname{Tr}_R V^n\right)$$

with f_R enumerating bound states of D2-D4 branes:

$$f_R(a,q) = \sum_{i,j} N_{R,i,j} \frac{a^i q^j}{q - q^{-1}}, \qquad N_{R,i,j} \in \mathbb{Z}$$

BPS integralities in terms of HOMFLY-PT polynomials:

$$f_{S^3}(a,q) = P_{S^3}(a,q) - P_{\Box}(a,q)P_{S^2}(a,q) + \frac{1}{3}P_{\Box}(a,q)^3 - \frac{1}{3}P_{\Box}(a^3,q^3)$$

Brane amplitude as generating function of colored polynomials:

$$\sum_{R} P_R(a,q) \operatorname{Tr}_R V = \exp\left(\sum_{n=1}^{\infty} \sum_{R} \frac{1}{n} f_R(a^n,q^n) \operatorname{Tr}_R V^n\right)$$

with f_R enumerating bound states of D2-D4 branes:

$$f_R(a,q) = \sum_{i,j} N_{R,i,j} \frac{a^i q^j}{q - q^{-1}}, \qquad N_{R,i,j} \in \mathbb{Z}$$

BPS integralities in terms of HOMFLY-PT polynomials:

$$f_{S^3}(a,q) = P_{S^3}(a,q) - P_{\Box}(a,q)P_{S^2}(a,q) + \frac{1}{3}P_{\Box}(a,q)^3 - \frac{1}{3}P_{\Box}(a^3,q^3)$$

For symmetric representations: $P(x) = \prod_{r>1;i,j;k>0} \left(1 - x^r a^i q^{j+2k+1}\right)^{N_{r,i,j}}$

Brane amplitude as generating function of colored polynomials:

$$\sum_{R} P_R(a,q) \operatorname{Tr}_R V = \exp\left(\sum_{n=1}^{\infty} \sum_{R} \frac{1}{n} f_R(a^n,q^n) \operatorname{Tr}_R V^n\right)$$

with f_R enumerating bound states of D2-D4 branes:

$$f_R(a,q) = \sum_{i,j} N_{R,i,j} \frac{a^i q^j}{q - q^{-1}}, \qquad N_{R,i,j} \in \mathbb{Z}$$

BPS integralities in terms of HOMFLY-PT polynomials:
$$f_{S^3}(a,q) = P_{S^3}(a,q) - P_{\Box}(a,q)P_{S^2}(a,q) + \frac{1}{3}P_{\Box}(a,q)^3 - \frac{1}{3}P_{\Box}(a^3,q^3)$$

For symmetric representations: $P(x) = \prod_{r \ge 1; i, j; k \ge 0} \left(1 - x^r a^i q^{j+2k+1}\right)^{N_{r,i,j}}$

J

Kucharski-Reineke-Stosic-PS (arXiv: 1707.02991, 1707.04017)

BPS states enumerated by LMOV invariants are bound states of certain "elementary" states, whose interactions are encoded in a quiver diagram. Nodes of a quiver correspond to those "elementary" states, and arrows to interactions.

Consider moduli space of maps $\mathbb{C}^{d_i} \to \mathbb{C}^{d_j}$. It is characterized

Consider moduli space of maps $\mathbb{C}^{d_i} \to \mathbb{C}^{d_j}$. It is characterized

$$P_C(x_1, \dots, x_m) = \sum_{d_1, \dots, d_m} \frac{(-q)^{\sum_{i,j=1}^m C_{i,j}d_i d_j}}{(q^2; q^2)_{d_1} \cdots (q^2; q^2)_{d_m}} x_1^{d_1} \cdots x_m^{d_m}$$
$$= \prod_{(d_1, \dots, d_m) \neq 0} \prod_{j \in \mathbb{Z}} \prod_{k \ge 0} \left(1 - (x_1^{d_1} \cdots x_m^{d_m}) q^{j+2k+1} \right)^{(-1)^{j+1}\Omega_{d_1, \dots, d_m; j}}$$

Consider moduli space of maps $\mathbb{C}^{d_i} \to \mathbb{C}^{d_j}$. It is characterized

$$P_{C}(x_{1},...,x_{m}) = \sum_{d_{1},...,d_{m}} \frac{(-q)^{\sum_{i,j=1}^{m}C_{i,j}d_{i}d_{j}}}{(q^{2};q^{2})_{d_{1}}\cdots(q^{2};q^{2})_{d_{m}}} x_{1}^{d_{1}}\cdots x_{m}^{d_{m}}$$
$$= \prod_{(d_{1},...,d_{m})\neq 0} \prod_{j\in\mathbb{Z}}\prod_{k\geq 0} \left(1 - (x_{1}^{d_{1}}\cdots x_{m}^{d_{m}})q^{j+2k+1}\right)^{(-1)^{j+1}\Omega_{d_{1},...,d_{m};j}}$$
Recall, for a knot:
$$P(x) = \prod_{r\geq 1;i,j;k\geq 0} \left(1 - x^{r}a^{i}q^{j+2k+1}\right)^{N_{r,i,j}}$$

Consider moduli space of maps $\mathbb{C}^{d_i} \to \mathbb{C}^{d_j}$. It is characterized

$$P_{C}(x_{1},...,x_{m}) = \sum_{d_{1},...,d_{m}} \frac{(-q)^{\sum_{i,j=1}^{m}C_{i,j}d_{i}d_{j}}}{(q^{2};q^{2})_{d_{1}}\cdots(q^{2};q^{2})_{d_{m}}} x_{1}^{d_{1}}\cdots x_{m}^{d_{m}}}$$
$$= \prod_{(d_{1},...,d_{m})\neq 0} \prod_{j\in\mathbb{Z}}\prod_{k\geq 0} \left(1 - (x_{1}^{d_{1}}\cdots x_{m}^{d_{m}})q^{j+2k+1}\right)^{(-1)^{j+}(\Omega_{d_{1},...,d_{m};j})}$$
Recall, for a knot:
$$P(x) = \prod_{r\geq 1;i,j;k\geq 0} \left(1 - x^{r}a^{i}q^{j+2k+1}\right)^{N_{r,i,j}}$$

With appropriate identification of variables, generating function of colored HOMFLY-PT polynomials can be written in the form of motivic generating function, for some particular symmetric matrix *C*

$$P(x) = \sum_{r=0}^{\infty} \overline{P}_r(a,q) x^r = \sum_{d_1,\dots,d_m \ge 0} q^{\sum_{i,j} C_{i,j} d_i d_j} x^{d_1 + \dots + d_m} \frac{\prod_{i=1}^m q^{l_i d_i} a^{a_i d_i} (-1)^{t_i d_i}}{\prod_{i=1}^m (q^2;q^2)_{d_i}}$$
$$x_i = x a^{a_i} q^{l_i - 1} (-1)^{t_i}$$

With appropriate identification of variables, generating function of colored HOMFLY-PT polynomials can be written in the form of motivic generating function, for some particular symmetric matrix *C*

$$P(x) = \sum_{r=0}^{\infty} \overline{P}_r(a,q) x^r = \sum_{d_1,\dots,d_m \ge 0} q^{\sum_{i,j} C_{i,j} d_i d_j} x^{d_1 + \dots + d_m} \frac{\prod_{i=1}^m q^{l_i d_i} a^{a_i d_i} (-1)^{t_i d_i}}{\prod_{i=1}^m (q^2;q^2)_{d_i}}$$

Note: infinite number of colored polynomials / LMOV invariants encoded in a finite number of parameters of a matrix *C*.

With appropriate identification of variables, generating function of colored HOMFLY-PT polynomials can be written in the form of motivic generating function, for some particular symmetric matrix *C*

$$P(x) = \sum_{r=0}^{\infty} \overline{P}_r(a,q) x^r = \sum_{d_1,\dots,d_m \ge 0} q^{\sum_{i,j} C_{i,j} d_i d_j} x^{d_1 + \dots + d_m} \frac{\prod_{i=1}^m q^{l_i d_i} a^{a_i d_i} (-1)^{t_i d_i}}{\prod_{i=1}^m (q^2;q^2)_{d_i}}$$

Note: infinite number of colored polynomials / LMOV invariants encoded in a finite number of parameters of a matrix *C*.

Knots	Quivers
Homological degrees, framing	Number of loops

With appropriate identification of variables, generating function of colored HOMFLY-PT polynomials can be written in the form of motivic generating function, for some particular symmetric matrix *C*

$$P(x) = \sum_{r=0}^{\infty} \overline{P}_r(a,q) x^r = \sum_{d_1,\dots,d_m \ge 0} q^{\sum_{i,j} C_{i,j} d_i d_j} x^{d_1 + \dots + d_m} \frac{\prod_{i=1}^m q^{l_i d_i} a^{a_i d_i} (-1)^{t_i d_i}}{\prod_{i=1}^m (q^2;q^2)_{d_i}}$$

Note: infinite number of colored polynomials / LMOV invariants encoded in a finite number of parameters of a matrix *C*.

Knots	Quivers
Homological degrees, framing	Number of loops
Colored HOMFLY-PT	Motivic generating series
With appropriate identification of variables, generating function of colored HOMFLY-PT polynomials can be written in the form of motivic generating function, for some particular symmetric matrix *C*

$$P(x) = \sum_{r=0}^{\infty} \overline{P}_r(a,q) x^r = \sum_{d_1,\dots,d_m \ge 0} q^{\sum_{i,j} C_{i,j} d_i d_j} x^{d_1 + \dots + d_m} \frac{\prod_{i=1}^m q^{l_i d_i} a^{a_i d_i} (-1)^{t_i d_i}}{\prod_{i=1}^m (q^2;q^2)_{d_i}}$$

Knots	Quivers	
Homological degrees, framing	Number of loops	
Colored HOMFLY-PT	Motivic generating series	
LMOV invariants	Motivic DT-invariants $\in \Gamma$	

With appropriate identification of variables, generating function of colored HOMFLY-PT polynomials can be written in the form of motivic generating function, for some particular symmetric matrix *C*

$$P(x) = \sum_{r=0}^{\infty} \overline{P}_r(a,q) x^r = \sum_{d_1,\dots,d_m \ge 0} q^{\sum_{i,j} C_{i,j} d_i d_j} x^{d_1 + \dots + d_m} \frac{\prod_{i=1}^m q^{l_i d_i} a^{a_i d_i} (-1)^{t_i d_i}}{\prod_{i=1}^m (q^2;q^2)_{d_i}}$$

Knots	Quivers	
Homological degrees, framing	Number of loops	
Colored HOMFLY-PT	Motivic generating series	
LMOV invariants $\in \mathbb{N}$	Motivic DT-invariants $\in \mathbb{N}$	1

With appropriate identification of variables, generating function of colored HOMFLY-PT polynomials can be written in the form of motivic generating function, for some particular symmetric matrix *C*

$$P(x) = \sum_{r=0}^{\infty} \overline{P}_r(a,q) x^r = \sum_{d_1,\dots,d_m \ge 0} q^{\sum_{i,j} C_{i,j} d_i d_j} x^{d_1 + \dots + d_m} \frac{\prod_{i=1}^m q^{l_i d_i} a^{a_i d_i} (-1)^{t_i d_i}}{\prod_{i=1}^m (q^2;q^2)_{d_i}}$$

Knots	Quivers
Homological degrees, framing	Number of loops
Colored HOMFLY-PT	Motivic generating series
LMOV invariants $\in \mathbb{N}$	Motivic DT-invariants $\in \mathbb{N}$
Classical LMOV invariants	Numerical DT-invariants

With appropriate identification of variables, generating function of colored HOMFLY-PT polynomials can be written in the form of motivic generating function, for some particular symmetric matrix *C*

$$P(x) = \sum_{r=0}^{\infty} \overline{P}_r(a,q) x^r = \sum_{d_1,\dots,d_m \ge 0} q^{\sum_{i,j} C_{i,j} d_i d_j} x^{d_1 + \dots + d_m} \frac{\prod_{i=1}^m q^{l_i d_i} a^{a_i d_i} (-1)^{t_i d_i}}{\prod_{i=1}^m (q^2;q^2)_{d_i}}$$

Knots	Quivers	
Homological degrees, framing	Number of loops	
Colored HOMFLY-PT	Motivic generating series	
LMOV invariants $\in \mathbb{N}$ Motivic DT-invariant		
Classical LMOV invariants	Numerical DT-invariants	
Algebra of BPS states	Cohom. Hall Algebra	

Quivers and HOMFLY-PT homology

Recall – colored HOMFLY-PT polynomials arise as Euler characteristics of coloured HOMFLY-PT homologies:

$$P_r(a,q) = P_r(a,q,-1) = \sum_{i,j,k} a^i q^j (-1)^k \dim \mathcal{H}^{S^r}_{ijk}(K).$$

Some homological information is encoded in superpolynomials:

$$P_r(a,q,t) = \sum_{i,j,k} a^i q^j t^k \dim \mathcal{H}_{ijk}^{S^r}(K) \equiv \sum_{i \in \mathscr{G}_r(K)} a^{a_i^{(r)}} q^{q_i^{(r)}} t^{t_i^{(r)}}$$

Quivers and HOMFLY-PT homology

Recall – colored HOMFLY-PT polynomials arise as Euler characteristics of coloured HOMFLY-PT homologies:

$$P_r(a,q) = P_r(a,q,-1) = \sum_{i,j,k} a^i q^j (-1)^k \operatorname{dim} \mathcal{H}_{ijk}^{S^r}(K).$$

Some homological information is encoded in superpolynomials:

Quivers and HOMFLY-PT homology

Recall – colored HOMFLY-PT polynomials arise as Euler characteristics of coloured HOMFLY-PT homologies:

$$P_r(a,q) = P_r(a,q,-1) = \sum_{i,j,k} a^i q^j (-1)^k \operatorname{dim} \mathcal{H}_{ijk}^{S^r}(K).$$

Some homological information is encoded in superpolynomials:

$$P_{r}(a,q,t) = \sum_{i,j,k} a^{i}q^{j}t^{k} \dim \mathcal{H}_{ijk}^{S^{r}}(K) \equiv \sum_{i \in \mathscr{G}_{r}(K)} a^{a^{(r)}_{i}}q^{q^{(r)}_{i}}t^{t^{(r)}_{i}},$$

$$x_{i} = x\lambda_{i}, \qquad \lambda_{i} = a^{a_{i}}q^{q_{i}-t_{i}}(-t)^{t_{i}}$$
Homological diagram 0
for figure-8 knot
$$-2$$

$$a$$

$$x_{i} = x\lambda_{i}, \qquad \lambda_{i} = a^{a_{i}}q^{q_{i}-t_{i}}(-t)^{t_{i}}$$
Relation to quivers:
$$t^{(1)}_{i} \equiv t_{i} = C_{i,i}$$

Examples

Colored polynomial for trefoil: $P_r(a,q) = \frac{a^{2r}}{q^{2r}} \sum_{k=0}^r \begin{bmatrix} r \\ k \end{bmatrix} q^{2k(r+1)} \prod_{i=1}^k (1-a^2q^{2(i-2)})$

Examples

Colored polynomial for trefoil: $P_r(a,q) = \frac{a^{2r}}{q^{2r}} \sum_{k=0}^r {r \brack k} q^{2k(r+1)} \prod_{i=1}^k (1-a^2q^{2(i-2)})$ Quiver form follows from: ${r \brack k} (\frac{a^2}{q^2};q^2)_k = \sum_{i=0}^k \frac{(q^2;q^2)_r(-\frac{a^2}{q^2})^i q^{i(i-1)}}{(q^2;q^2)_{r-k}(q^2;q^2)_i(q^2;q^2)_{k-i}}$

0

We find:
$$C^{T_{2,3}} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

Examples – torus knots

Colored polynomial for trefoil:
$$P_r(a,q) = \frac{a^{2r}}{q^{2r}} \sum_{k=0}^r {r \brack k} q^{2k(r+1)} \prod_{i=1}^k (1-a^2q^{2(i-2)})$$

Quiver form follows from: ${r \brack k} (\frac{a^2}{q^2};q^2)_k = \sum_{i=0}^k \frac{(q^2;q^2)_r(-\frac{a^2}{q^2})^i q^{i(i-1)}}{(q^2;q^2)_{r-k}(q^2;q^2)_i(q^2;q^2)_{k-i}}$

0

We find:
$$C^{T_{2,3}} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

(2,5) torus knot: $C^{T_{2,5}} = \begin{bmatrix} 0 & 1 & 1 & 3 & 3 \\ 1 & 2 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 & 4 \\ 3 & 3 & 4 & 4 & 5 \end{bmatrix}$

Examples – torus knots

Examples – 62 knot

Examples – 63 knot

Quivers determined for:

- all knots up to 6 crossings
- (2,2*p*+1) torus knots, for all *p*
- (2,2*p*) torus links
- (3,3p+1) and (3,3p+2) torus knots
- an infinite family of twist knots
- an infinite family of rational and arborescent knots (*Stosic-Wedrich*)

How unique is the correspondence?

Knot		Equivalent quivers
Unknot	01	1
Torus knots $T_{2,2p+1}$	3_1	1
	5_1	3
	71	13
	91	68
	111	405
	13_{1}	2684
	15_{1}	19557
	:	:
	$(2p+1)_1$	~ 2 <i>p</i> !
Twists knots $TK_{2 p +2}$	4_1	2
	6_1	141
	81	36555
Twists knots TK_{2p+1}	5_2	12
	7_2	1 983
Stand-alone examples	6_2	3534
	6 ₃	142368
	7_3	109 636

arXiv: 2105.11806

Theorem 6. Consider a quiver Q corresponding to the knot K and another symmetric quiver Q' such that $Q'_0 = Q_0$ and $\lambda'_i = \lambda_i \quad \forall i \in Q_0$ (λ_i comes from the knots-quivers change of variables). If Q and Q' are related by a sequence of disjoint transpositions, each exchanging non-diagonal elements

$$C_{ab} \leftrightarrow C_{cd}, \qquad C_{ba} \leftrightarrow C_{dc},$$

for some pairwise different $a, b, c, d, \in Q_0$, such that

$$\lambda_a \lambda_b = \lambda_c \lambda_d$$

and

$$C_{ab} = C_{cd} - 1, \qquad C_{ai} + C_{bi} = C_{ci} + C_{di} - \delta_{ci} - \delta_{di}, \quad \forall i \in Q_0,$$

or

$$C_{cd} = C_{ab} - 1, \qquad C_{ci} + C_{di} = C_{ai} + C_{bi} - \delta_{ai} - \delta_{bi}, \quad \forall i \in Q_0,$$

then Q and Q' are equivalent in the sense of the definition 4.

Proof: follows from comparison of quiver generating series P(x) for Q and Q'. Agreement at the order x^2 leads to the *center of mass* condition (i.e. the center of mass for nodes (a,b) coincides with the center of mass for nodes (c,d)).

$$\lambda_a \lambda_b = \lambda_c \lambda_d$$

Proof: follows from comparison of quiver generating series P(x) for Q and Q'. Agreement at the order x^2 leads to the *center of mass* condition (i.e. the center of mass for nodes (a,b) coincides with the center of mass for nodes (c,d)).

$$\lambda_a \lambda_b = \lambda_c \lambda_d$$

Agreement at the order x³ leads to the conditions of the form:

$$C_{ab} = C_{cd} - 1, \qquad C_{ai} + C_{bi} = C_{ci} + C_{di} - \delta_{ci} - \delta_{di}, \quad \forall i \in Q_0.$$

Proof: follows from comparison of quiver generating series P(x) for Q and Q'. Agreement at the order x^2 leads to the *center of mass* condition (i.e. the center of mass for nodes (a,b) coincides with the center of mass for nodes (c,d)).

$$\lambda_a \lambda_b = \lambda_c \lambda_d$$

Agreement at the order x³ leads to the conditions of the form:

$$C_{ab} = C_{cd} - 1, \qquad C_{ai} + C_{bi} = C_{ci} + C_{di} - \delta_{ci} - \delta_{di}, \quad \forall i \in Q_0,$$

The agreement at the order x³ asserts the agreement to all orders, as follows from the multi-cover skein relation. [*Ekholm-Kucharski-Longhi, arXiv: 1910.06193*]

Instead of analyzing quiver matrices, consider the structure of quiver generating series. We find that in general it takes form

$$P_{K}(x, a, q, t) = \sum_{\check{d}_{1}, \dots, \check{d}_{m-n} \ge 0} (-q)^{\sum_{i,j} \check{C}_{ij} \check{d}_{i} \check{d}_{j}} \frac{\check{x}_{1}^{\check{d}_{1}} \cdots \check{x}_{m-n}^{\check{d}_{m-n}}}{(q^{2}; q^{2})_{\check{d}_{1}} \cdots (q^{2}; q^{2})_{\check{d}_{m-n}}} \Pi_{\check{d}_{1}, \dots, \check{d}_{n}} \Big|_{\check{x}_{i} = x\check{\lambda}_{i}}$$

where \check{C} is a matrix of a subquiver, and the last piece takes form

$$\frac{\prod_{\check{d}_1,\dots,\check{d}_n}}{(q^2;q^2)_{\check{d}_1}\cdots(q^2;q^2)_{\check{d}_n}} = \sum_{\check{d}_1=\alpha_1+\beta_1}\cdots\sum_{\check{d}_n=\alpha_n+\beta_n}\frac{(-q)^{2\sum_{i< j}\beta_i\alpha_j+\pi_2(\alpha_1,\dots,\alpha_n;\beta_1,\dots,\beta_n)}\kappa^{\beta_1+\dots+\beta_n}}{(q^2;q^2)_{\alpha_1}(q^2;q^2)_{\beta_1}\cdots(q^2;q^2)_{\alpha_n}(q^2;q^2)_{\beta_n}}$$

Instead of analyzing quiver matrices, consider the structure of quiver generating series. We find that in general it takes form

$$P_{K}(x,a,q,t) = \sum_{\check{d}_{1},...,\check{d}_{m-n} \ge 0} (-q)^{\sum_{i,j}\check{C}_{ij}\check{d}_{i}\check{d}_{j}} \frac{\check{x}_{1}^{d_{1}}\cdots\check{x}_{m-n}^{d_{m-n}}}{(q^{2};q^{2})_{\check{d}_{1}}\cdots(q^{2};q^{2})_{\check{d}_{m-n}}} \Pi_{\check{d}_{1},...,\check{d}_{n}} \Big|_{\check{x}_{i}=x\check{\lambda}_{i}}$$

where \check{C} is a matrix of a subquiver, and the last piece takes form

 $\frac{\prod_{\check{d}_1,\dots,\check{d}_n}}{(q^2;q^2)_{\check{d}_1}\cdots(q^2;q^2)_{\check{d}_n}} = \sum_{\check{d}_1=\alpha_1+\beta_1}\cdots\sum_{\check{d}_n=\alpha_n+\beta_n}\frac{(-q)^{2\sum_{i< j}\beta_i\alpha_j+\pi_2(\alpha_1,\dots,\alpha_n;\beta_1,\dots,\beta_n)}\kappa^{\beta_1+\dots+\beta_n}}{(q^2;q^2)_{\alpha_1}(q^2;q^2)_{\beta_1}\cdots(q^2;q^2)_{\alpha_n}(q^2;q^2)_{\beta_n}}$

Recall: a permutation σ is determined by a set of its inversions, i.e. a set of all pairs ($\sigma(i), \sigma(j)$) such that i < j and $\sigma(i) > \sigma(j)$. Such a set of inversions is encoded in the term $\sum_{i < j} \beta_i \alpha_j$

Instead of analyzing quiver matrices, consider the structure of quiver generating series. We find that in general it takes form

$$P_{K}(x, a, q, t) = \sum_{\check{d}_{1}, \dots, \check{d}_{m-n} \ge 0} (-q)^{\sum_{i,j} \check{C}_{ij} \check{d}_{i} \check{d}_{j}} \frac{\check{x}_{1}^{d_{1}} \cdots \check{x}_{m-n}^{d_{m-n}}}{(q^{2}; q^{2})_{\check{d}_{1}} \cdots (q^{2}; q^{2})_{\check{d}_{m-n}}} \Pi_{\check{d}_{1}, \dots, \check{d}_{n}} \Big|_{\check{x}_{i} = x\check{\lambda}_{i}}$$

where \check{C} is a matrix of a subquiver, and the last piece takes form $\frac{\prod_{\check{d}_1,\ldots,\check{d}_n}}{(q^2;q^2)_{\check{d}_1}\cdots(q^2;q^2)_{\check{d}_n}} = \sum_{\check{d}_1=\alpha_1+\beta_1}\cdots\sum_{\check{d}_n=\alpha_n+\beta_n}\frac{(-q)^{\check{d}_1\circ j}\hat{\beta}_i\alpha_j}{(q^2;q^2)_{\alpha_1}(q^2;q^2)_{\beta_1}\cdots(q^2;q^2)_{\alpha_n}(q^2;q^2)_{\beta_n}}$

Recall: a permutation σ is determined by a set of its inversions, i.e. a set of all pairs ($\sigma(i), \sigma(j)$) such that i < j and $\sigma(i) > \sigma(j)$. Such a set of inversions is encoded in the term $\sum_{i < j} \beta_i \alpha_j$

It follows that various identifications of indices lead to a permutohedron of equivalent quivers!

Such structures arise from the following formula for $\Pi_{\check{d}_1,...,\check{d}_n} = (\xi; q^2)_{\check{d}_1+...+\check{d}_n}$ (or its generalizations):

$$\frac{(\xi;q^2)_{\check{d}_1+\ldots+\check{d}_n}}{(q^2;q^2)_{\check{d}_1}\cdots(q^2;q^2)_{\check{d}_n}} = \sum_{\alpha_1+\beta_1=\check{d}_1}\cdots\sum_{\alpha_n+\beta_n=\check{d}_n} (-q)^{\beta_1^2+\ldots+\beta_n^2+2\sum_{i=1}^{n-1}\beta_{i+1}(\check{d}_1+\ldots+\check{d}_i)} \times \frac{(\xi q^{-1})^{\beta_1+\ldots+\beta_n}}{(q^2;q^2)_{\alpha_1}(q^2;q^2)_{\beta_1}\cdots(q^2;q^2)_{\alpha_n}(q^2;q^2)_{\beta_n}},$$

Such structures arise from the following formula for $\Pi_{\check{d}_1,...,\check{d}_n} = (\xi; q^2)_{\check{d}_1+...+\check{d}_n}$ (or its generalizations):

$$\frac{(\xi;q^2)_{\check{d}_1+\ldots+\check{d}_n}}{(q^2;q^2)_{\check{d}_1}\cdots(q^2;q^2)_{\check{d}_n}} = \sum_{\alpha_1+\beta_1=\check{d}_1}\cdots\sum_{\alpha_n+\beta_n=\check{d}_n} (-q)^{\beta_1^2+\ldots+\beta_n^2+2\sum_{i=1}^{n-1}\beta_{i+1}(\check{d}_1+\ldots+\check{d}_i)} \times \frac{(\xi q^{-1})^{\beta_1+\ldots+\beta_n}}{(q^2;q^2)_{\alpha_1}(q^2;q^2)_{\beta_1}\cdots(q^2;q^2)_{\alpha_n}(q^2;q^2)_{\beta_n}},$$

Such form of quiver generating functions follows from constraints in the local equivalence theorem.

We refer to the subquiver mentioned above as a ``prequiver''. The full quiver is determined from a sub quiver by permutation and a pair of integers (k,l), in the operation called ``splitting''.

 $\sigma(i) < \sigma(j) \quad \begin{pmatrix} \check{C}_{ss} & \ddots & \check{C}_{si} & \check{C}_{si} + h_s & \cdots & \check{C}_{sj} & \check{C}_{sj} + h_s \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \check{C}_{is} & \cdots & \check{C}_{ii} & \check{C}_{ii} + k & \cdots & \check{C}_{ij} & \check{C}_{ij} + k \end{pmatrix}$ $[\bar{\check{C}}_{is} + h_s] \cdots]\bar{\check{C}}_{ii} + k] [\bar{\check{C}}_{ii} + l] [\bar{\check{C}}_{ii} + l] [\cdots]\bar{\check{C}}_{ij} + k + 1] [\bar{\check{C}}_{ij} + l]$ $\begin{pmatrix} \check{C}_{ss} & \ddots & \check{C}_{si} & \ddots & \check{C}_{sj} \\ \vdots & \vdots & \vdots & \vdots \\ \bar{C}_{is} & \ddots & \check{C}_{ii} & \ddots & \check{C}_{ij} \\ \vdots & \vdots & \vdots & \vdots \\ \bar{C}_{is} & \ddots & \check{C}_{ii} & \ddots & \check{C}_{ij} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{C}_{js} & \ddots & \check{C}_{ji} & \cdots & \check{C}_{jj} \end{pmatrix}$ $\sigma(i) > \sigma(j) \begin{pmatrix} \check{C}_{ss} & \cdots & \check{C}_{si} & \check{C}_{si} + h_s & \cdots & \check{C}_{sj} & \check{C}_{sj} + h_s \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \check{C}_{is} & \cdots & \check{C}_{ii} & \check{C}_{ii} + k & \cdots & \check{C}_{ij} & \check{C}_{ij} + k + 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \check{C}_{is} + h_s & \cdots & \check{C}_{ii} + k & \check{C}_{ii} + l & \cdots & \check{C}_{ij} + k \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \check{C}_{js} & \cdots & \check{C}_{ji} & \check{C}_{ji} + k & \cdots & \check{C}_{jj} + k \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \check{C}_{js} + h_s & \cdots & \check{C}_{ji} & \check{C}_{ji} + k & \cdots & \check{C}_{jj} + k \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \check{C}_{js} + h_s & \cdots & \check{C}_{ji} + k + 1 & \check{C}_{ji} + l & \cdots & \check{C}_{jj} + k \\ \check{C}_{ji} + l & \cdots & \check{C}_{jj} + k & \check{C}_{jj} + l \end{pmatrix}$

In general, there are several equivalent formulas for a given HOMFLY-PT generating function, and each of them gives rise to one permutohedron. Altogether we obtain a large permutohedron graph.

In this case permutohedron graph is made of 3 permutohedra \prod_3 .

5₂

Global structure – examples

For (2,2*p*+1) torus knots, permutohedron graph is made of two chains of larger and larger permutohedra.

Global structure – examples

For (2,2*p*+1) torus knots, permutohedron graph is made of two chains of larger and larger permutohedra.

 $\lambda_1\lambda_7 = \lambda_2\lambda_5$
Global structure – examples

For (2,2*p*+1) torus knots, permutohedron graph is made of two chains of larger and larger permutohedra.

9₁

Global structure – examples

For (2,2*p*+1) torus knots, permutohedron graph is made of two chains of larger and larger permutohedra.

Summary

- Knots-quivers correspondence, motivated by string theory, relates knot theory and quiver representation theory
- It turns out that many quivers may be associated to a given knot
- They are parametrized by vertices of a permutohedron graph
- This indicates some interesting structure of the underlying HOMFLY-PT homology, and of the corresponding LMOV (motivic DT) invariants

Summary

Future directions and related developments:

- identify permutohedra for rational and arborescent knots (following Stosic-Wedrich, arXiv: 1711.03333, 2004.10837)
- develop open topological string interpretation (following Ekholm-Kucharski-Longhi, arXiv: 1811.03110, 1910.06193)
- conduct analogous analysis for other underlying toric Calabi-Yau manifolds (following Kimura-Panfil-Sugimoto-PS, arXiv: 1811.03556, 2011.06783)

Foundation for Polish Science