Permutohedra for knots and quivers

Piotr Sułkowski

Faculty of Physics, University of Warsaw
Algebra, Geometry \& Physics seminar - July, 2021

Jakub Jankowski ${ }^{1,3}$, Piotr Kucharski ${ }^{2,3}$, Hélder Larraguível ${ }^{3}$, Dmitry Noshchenko ${ }^{3}$, and Piotr Sutkowski ${ }^{2,3}$
${ }^{1}$ Institute of Theoretical Physics, University of Wroctaw, PL-50204 Wroctaw, Poland
${ }^{2}$ Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA
${ }^{3}$ Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
E-mail: jakub.jankowski@uwr.edu.pl, piotrek@caltech.edu, helder.larraguivel@fuw.edu.pl, dmitry.noshchenko@fuw.edu.pl, psulkows@fuw.edu.pl

AbStract: The knots-quivers correspondence states that various characteristics of a knot are encoded in the corresponding quiver and the moduli space of its representations. However, this correspondence is not a bijection: more than one quiver may be assigned to a given knot and encode the same information. In this work we study this phenomenon systematically and show that it is generic rather than exceptional. First, we find conditions that characterize equivalent quivers. Then we show that equivalent quivers arise in families that have the structure of permutohedra, and the set of all equivalent quivers for a given knot is parameterized by vertices of a graph made of several permutohedra glued together. These graphs can be also interpreted as webs of dual $3 \mathrm{~d} \mathcal{N}=2$ theories. All these results are intimately related to properties of homological diagrams for knots, as well as to multi-cover skein relations that arise in counting of holomorphic curves with boundaries on Lagrangian branes in Calabi-Yau three-folds.

Permutohedron

Permutohedron: ($n-1$)-dimensional polytope whose vertices represent permutations of n objects, and edges correspond to transpositions of adjacent neighbours.

Permutohedron

Permutohedron: ($n-1$)-dimensional polytope whose vertices represent permutations of n objects, and edges correspond to transpositions of adjacent neighbours.

Permutohedron

Permutohedron: ($n-1$)-dimensional polytope whose vertices represent permutations of n objects, and edges correspond to transpositions of adjacent neighbours.

Permutohedra for knots and quivers

Permutohedra graphs - graphs made of several permutohedra, whose vertices represent equivalent quivers associated to knots.

Permutohedra for knots and quivers

Permutohedra graphs - graphs made of several permutohedra, whose vertices represent equivalent quivers associated to knots.

Compactification and dualities

Superstring theory - effective theory in 4-dim follows from compactification of 10-dim string theory on a Calabi-Yau manifold.

10-dim $=R^{4} \times$

(Beyond) Standard Model theory

Compactification and dualities

Interesting toy models, which lead to deep statements in mathematics: compactification of 6-dim M5-branes on lower-dimensional manifolds.

Compactification and dualities

Interesting toy models, which lead to deep statements in mathematics: compactification of 6-dim M5-branes on lower-dimensional manifolds. Alday-Gaiotto-Tachikawa (AGT) duality: compactification on a Riemann surface

(Liouville, Toda)

Compactification and dualities

Interesting toy models, which lead to deep statements in mathematics: compactification of 6 -dim M5-branes on lower-dimensional manifolds. Alday-Gaiotto-Tachikawa (AGT) duality: compactification on a Riemann surface

(Liouville, Toda)
3d-3d correspondence:

$$
\begin{aligned}
& \text { 6-dim }=\mathbf{R}^{\mathbf{3}} \times(\text { 3-manifold }) \\
& \mathrm{v}=2 \text { sUSY gauge theory } \begin{array}{c}
\text { Chern-Simons theory } \\
\text { 3-dim and knot invariants }
\end{array}
\end{aligned}
$$

Compactification and dualities

Interesting toy models, which lead to deep statements in mathematics: compactification of 6-dim M5-branes on lower-dimensional manifolds. Alday-Gaiotto-Tachikawa (AGT) duality: compactification on a Riemann surface

(Liouville, Toda)
3d-3d correspondence:

$$
\begin{aligned}
& \text { 6-dim }=R^{\mathbf{R}} \times(\mathbf{3 - m a n i f o l d}) \\
& v=2 \text { suSy gauge theory } \begin{array}{c}
\text { Chern-Simons theory } \\
\text { 3-dim and knot invariants }
\end{array}
\end{aligned}
$$

2d-4d correspondence: (M5's in 6-dim) = (SUSY theory in 2-dim) x (4-manifolds)

Compactification and dualities

Interesting toy models, which lead to deep statements in mathematics: compactification of 6 -dim M5-branes on lower-dimensional manifolds. Alday-Gaiotto-Tachikawa (AGT) duality: compactification on a Riemann surface

(Liouville, Toda)
3d-3d correspondence:

$$
\begin{aligned}
& \text { 6-dim }=\mathbf{R}^{3} \times(3-\text { manifold) } \\
& V=2 \text { suSY gauge theory } \begin{array}{c}
\text { Chern-Simons theory } \\
\text { 3-dim and knot invariants }
\end{array}
\end{aligned}
$$

2d-4d correspondence: (M5's in 6-dim) = (SUSY theory in 2-dim) x (4-manifolds)

Chern-Simons theory

Chern-Simons gauge theory - 3-dim TQFT [Witten, 1989]:

$$
S=\frac{k}{4 \pi} \int \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

Chern-Simons theory

Chern-Simons gauge theory - 3-dim TQFT [Witten, 1989]:

$$
S=\frac{k}{4 \pi} \int \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

Polynomial knot invariants from Wilson loop observables:

$$
P_{R}(a, q)=\left\langle\operatorname{Tr}_{R} e^{\oint A}\right\rangle=\int \mathcal{D} A\left(\operatorname{Tr}_{R} e^{\oint A}\right) e^{\frac{i k}{4 \pi} S}
$$

Chern-Simons theory

Chern-Simons gauge theory - 3-dim TQFT [Witten, 1989]:

$$
S=\frac{k}{4 \pi} \int \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

Polynomial knot invariants from Wilson loop observables:

$$
P_{R}(a, q)=\left\langle\operatorname{Tr}_{R} e^{\oint A}\right\rangle=\int \mathcal{D} A\left(\operatorname{Tr}_{R} e^{\oint A}\right) e^{\frac{i k}{4 \pi} S}
$$

HOMFLY-PT polynomial for $\operatorname{SU}(\mathrm{N})$ gauge group:

$$
q=e^{\frac{2 \pi}{k+N}}, \quad a=q^{N}
$$

Jones polynomial for $\operatorname{SU}(2)$, Alexander polynomial for $a=1$

Topological strings and open-closed duality

Chern-Simons theory on \mathbf{S}^{3} arises as an effective description of A-model open topological string theory in deformed conifold $T^{*} \mathbf{S}^{3}$, with appropriate boundary conditions (N branes) on S3 (Witten, 1993).

$T^{*} \mathbf{S}^{3}$

Topological strings and open-closed duality

Chern-Simons theory on \mathbf{S}^{3} arises as an effective description of A-model open topological string theory in deformed conifold $T^{*} \mathbf{S}^{3}$, with appropriate boundary conditions (N branes) on \mathbf{S}^{3} (Witten, 1993).

Chern-Simons

After a geometric transition, in the 't Hooft limit, $T^{*} \mathbf{S}^{3}$ is replaced by the resolved conifold X (with non-trivial \mathbf{S}^{2}), N branes disappear, and we are left with A-model closed topological string theory (Gopakumar-Vafa, 1998).

$$
Z^{\text {closed }}=\exp \left(\sum_{g=0}^{\infty} g_{s}^{2 g-2} F_{g}(Q)\right)
$$

Topological strings and open-closed duality

Chern-Simons theory on \mathbf{S}^{3} arises as an effective description of A-model open topological string theory in deformed conifold $T^{*} \mathbf{S}^{3}$, with appropriate boundary conditions (N branes) on \mathbf{S}^{3} (Witten, 1993).

Chern-Simons

Gromov-Witten

After a geometric transition, in the 't Hooft limit, $T^{*} \mathbf{S}^{3}$ is replaced by the resolved conifold X (with non-trivial \mathbf{S}^{2}), N branes disappear, and we are left with A-model closed topological string theory (Gopakumar-Vafa, 1998).

Knots arise once we introduce an extra lagrangian brane, which intersects \mathbf{S}^{3}, along a knot K. This brane survives the geometric transition.

M-theory, knots and BPS states

Embed the above system in M-theory. Chern-Simons theory on \mathbf{S}^{3} engineered by N M5-branes in deformed conifold $T^{*} \mathbf{S}^{3}$. A knot K engineered by extra M5-branes on lagrangian L_{K}. What is effective SUSY theory in 3 spacetime dimensions?

$$
\begin{aligned}
\text { space-time : } & \mathbb{R} \times T^{*} \mathbf{S}^{3} \times M_{4} \\
N \text { M5-branes : } & \mathbb{R} \times \mathbf{S}^{3} \times D \\
\text { M5-branes : } & \mathbb{R} \times L_{K} \times D
\end{aligned}
$$

M-theory, knots and BPS states

Embed the above system in M-theory. Chern-Simons theory on \mathbf{S}^{3} engineered by N M5-branes in deformed conifold $T^{*} \mathbf{S}^{3}$. A knot K engineered by extra M5-branes on lagrangian L_{K}. What is effective SUSY theory in 3 spacetime dimensions?

space-time :	$\mathbb{R} \times T^{*} \mathbf{S}^{3} \times M_{4}$
N M5-branes :	$\mathbb{R} \times \mathbf{S}^{3} \times D$
M5-branes :	$\mathbb{R} \times L_{K} \times D$

After the geometric transition we are left with an extra M5-brane in resolved conifold

$$
\begin{array}{ll}
\text { space-time : } & \mathbb{R} \times X \times M_{4} \\
\text { M5-branes : } & \mathbb{R} \times L_{K} \times D
\end{array}
$$

Knot invariants of K, computed by Chern-Simons theory on the initial \mathbf{S}^{3}, are encoded in (conjecturally) integral BPS invariants (Labastida-Marino-Ooguri-Vafa, 2000) in the effective SUSY theory on ($\mathbf{R} \times \mathrm{D}$).

M-theory, knots and BPS states

Embed the above system in M-theory. Chern-Simons theory on \mathbf{S}^{3} engineered by N M5-branes in deformed conifold $T^{*} \mathbf{S}^{3}$. A knot K engineered by extra M5-branes on lagrangian L_{K}. What is effective SUSY theory in 3 spacetime dimensions?

space-time :	$\mathbb{R} \times T^{*} \mathbf{S}^{3} \times M_{4}$
N M5-branes :	$\mathbb{R} \times \mathbf{S}^{3} \times D$
M5-branes :	$\mathbb{R} \times L_{K} \times D$

After the geometric transition we are left with an extra M5-brane in resolved conifold

$$
\begin{array}{ll}
\text { space-time : } & \mathbb{R} \times X \times M_{4} \\
\text { M5-branes : } & \mathbb{R} \times L_{K} \times D
\end{array}
$$

Knot invariants of K, computed by Chern-Simons theory on the initial \mathbf{S}^{3}, are encoded in (conjecturally) integral BPS invariants (Labastida-Marino-Ooguri-Vafa, 2000) in the effective SUSY theory on ($\mathbf{R} \times \mathrm{D}$).

$$
Z^{\text {open }}=\sum_{r=0}^{\infty} P_{r}(a, q) x^{r}=\prod_{r \geq 1 ; i, j ; k \geq 0}\left(1-x^{r} a^{i} q^{j+2 k+1}\right)^{N_{r, i, j}}
$$

Ooguri-Vafa (LMOV) invariants

Brane amplitude as generating function of colored polynomials:

$$
\sum_{R} P_{R}(a, q) \operatorname{Tr}_{R} V=\exp \left(\sum_{n=1}^{\infty} \sum_{R} \frac{1}{n} f_{R}\left(a^{n}, q^{n}\right) \operatorname{Tr}_{R} V^{n}\right)
$$

with f_{R} enumerating bound states of D2-D4 branes:

$$
f_{R}(a, q)=\sum_{i, j} N_{R, i, j} \frac{a^{i} q^{j}}{q-q^{-1}}, \quad N_{R, i, j} \in \mathbb{Z}
$$

Ooguri-Vafa (LMOV) invariants

Brane amplitude as generating function of colored polynomials:

$$
\sum_{R} P_{R}(a, q) \operatorname{Tr}_{R} V=\exp \left(\sum_{n=1}^{\infty} \sum_{R} \frac{1}{n} f_{R}\left(a^{n}, q^{n}\right) \operatorname{Tr}_{R} V^{n}\right)
$$

with f_{R} enumerating bound states of D2-D4 branes:

$$
f_{R}(a, q)=\sum_{i, j} N_{R, i, j} \frac{a^{i} q^{j}}{q-q^{-1}}, \quad N_{R, i, j} \in \mathbb{Z}
$$

BPS integralities in terms of HOMFLY-PT polynomials:

$$
f_{S^{3}}(a, q)=P_{S^{3}}(a, q)-P_{\square}(a, q) P_{S^{2}}(a, q)+\frac{1}{3} P_{\square}(a, q)^{3}-\frac{1}{3} P_{\square}\left(a^{3}, q^{3}\right)
$$

Ooguri-Vafa (LMOV) invariants

Brane amplitude as generating function of colored polynomials:

$$
\sum_{R} P_{R}(a, q) \operatorname{Tr}_{R} V=\exp \left(\sum_{n=1}^{\infty} \sum_{R} \frac{1}{n} f_{R}\left(a^{n}, q^{n}\right) \operatorname{Tr}_{R} V^{n}\right)
$$

with f_{R} enumerating bound states of D2-D4 branes:

$$
f_{R}(a, q)=\sum_{i, j} N_{R, i, j} \frac{a^{i} q^{j}}{q-q^{-1}}, \quad N_{R, i, j} \in \mathbb{Z}
$$

BPS integralities in terms of HOMFLY-PT polynomials:

$$
f_{S^{3}}(a, q)=P_{S^{3}}(a, q)-P_{\square}(a, q) P_{S^{2}}(a, q)+\frac{1}{3} P_{\square}(a, q)^{3}-\frac{1}{3} P_{\square}\left(a^{3}, q^{3}\right)
$$

For symmetric representations: $P(x)=\prod\left(1-x^{r} a^{i} q^{j+2 k+1}\right)^{N_{r, i, j}}$ $r \geq 1 ; i, j ; k \geq 0$

Ooguri-Vafa (LMOV) invariants

Brane amplitude as generating function of colored polynomials:

$$
\sum_{R} P_{R}(a, q) \operatorname{Tr}_{R} V=\exp \left(\sum_{n=1}^{\infty} \sum_{R} \frac{1}{n} f_{R}\left(a^{n}, q^{n}\right) \operatorname{Tr}_{R} V^{n}\right)
$$

with f_{R} enumerating bound states of D2-D4 branes:

$$
f_{R}(a, q)=\sum_{i, j} N_{R, i, j} \frac{a^{i} q^{j}}{q-q^{-1}}, \quad N_{R, i, j} \in \mathbb{Z}
$$

BPS integralities terms of HOMFLY-PT polynomials:

$$
f_{S^{3}}(a, q)=P_{S^{3}}(a, q)-P_{\square}(a, q) P_{S^{2}}(a, q)+\frac{1}{3} P_{\square}(a, q)^{3}-\frac{1}{3} P_{\square}\left(a^{3}, q^{3}\right)
$$

For symmetric representations: $P(x)=\prod\left(1-x^{r} a^{i} q^{j+2 k+1}\right)^{N_{r, i, j}}$ $r \geq 1 ; i, j ; k \geq 0$

Knots-quivers correspondence

Knots-quivers correspondence

Kucharski-Reineke-Stosic-PS (arXiv: 1707.02991, 1707.04017)
BPS states enumerated by LMOV invariants are bound states of certain "elementary" states, whose interactions are encoded in a quiver diagram. Nodes of a quiver correspond to those "elementary" states, and arrows to interactions.

Calabi-Yau description

Spacetime description

Quiver representation theory

Consider moduli space of maps $\mathbb{C}^{d_{i}} \rightarrow \mathbb{C}^{d_{j}}$. It is characterized by motivic Donaldson-Thomas invariants: $\Omega_{d_{1}, \ldots, d_{m} ; j} \in \mathbb{N}$

Quiver representation theory

Consider moduli space of maps $\mathbb{C}^{d_{i}} \rightarrow \mathbb{C}^{d_{j}}$. It is characterized by motivic Donaldson-Thomas invariants: $\Omega_{d_{1}, \ldots, d_{m} ; j} \in \mathbb{N}$

$$
\begin{aligned}
P_{C}\left(x_{1}, \ldots, x_{m}\right) & =\sum_{d_{1}, \ldots, d_{m}} \frac{(-q)^{\sum_{i, j=1}^{m} C_{i, j} d_{i} d_{j}}}{\left(q^{2} ; q^{2}\right)_{d_{1}} \cdots\left(q^{2} ; q^{2}\right)_{d_{m}}} x_{1}^{d_{1}} \cdots x_{m}^{d_{m}} \\
& =\prod_{\left(d_{1}, \ldots, d_{m}\right) \neq 0} \prod_{j \in \mathbb{Z}} \prod_{k \geq 0}\left(1-\left(x_{1}^{d_{1}} \cdots x_{m}^{d_{m}}\right) q^{j+2 k+1}\right)^{(-1)^{j+1} \Omega_{d_{1}, \ldots, d_{m} ; j}}
\end{aligned}
$$

Quiver representation theory

Consider moduli space of maps $\mathbb{C}^{d_{i}} \rightarrow \mathbb{C}^{d_{j}}$. It is characterized by motivic Donaldson-Thomas invariants: $\Omega_{d_{1}, \ldots, d_{m} ; j} \in \mathbb{N}$

$$
\begin{aligned}
P_{C}\left(x_{1}, \ldots, x_{m}\right) & =\sum_{d_{1}, \ldots, d_{m}} \frac{(-q)^{\sum_{i, j=1}^{m} C_{i, j} d_{i} d_{j}}}{\left(q^{2} ; q^{2}\right)_{d_{1}} \cdots\left(q^{2} ; q^{2}\right)_{d_{m}}} x_{1}^{d_{1}} \cdots x_{m}^{d_{m}} \\
& =\prod_{\left(d_{1}, \ldots, d_{m}\right) \neq 0} \prod_{j \in \mathbb{Z}} \prod_{k \geq 0}\left(1-\left(x_{1}^{d_{1}} \cdots x_{m}^{d_{m}}\right) q^{j+2 k+1}\right)^{(-1)^{j+1} \Omega_{d_{1}, \ldots, d_{m} ; j}}
\end{aligned}
$$

Recall, for a knot: $\quad P(x)=\prod_{r \geq 1 ; i, j ; k \geq 0}\left(1-x^{r} a^{i} q^{j+2 k+1}\right)^{N_{r, i, j}}$

Quiver representation theory

Consider moduli space of maps $\mathbb{C}^{d_{i}} \rightarrow \mathbb{C}^{d_{j}}$. It is characterized by motivic Donaldson-Thomas invariants: $\Omega_{d_{1}, \ldots, d_{m} ; j} \in \mathbb{N}$

$$
\begin{aligned}
& P_{C}\left(x_{1}, \ldots, x_{m}\right)=\sum_{d_{1}, \ldots, d_{m}} \frac{\left.(-q)^{\sum_{i, j=1}^{m} C_{i, j} d_{i} d_{i} d_{j}} q^{2}\right)_{d_{1}} \cdots\left(q^{2} ; q^{2}\right)_{d_{m}}}{d_{1} \cdots x_{m}^{d_{m}}} \\
& =\prod_{\left(d_{1}, \ldots, d_{m}\right) \neq 0} \prod_{j \in Z \in Z \geq 0} \prod^{\left.1-\left(x_{1}^{d_{1}} \ldots x_{m}^{d_{m}}\right) q^{j+2 k+1}\right)^{(-1)^{j}+} \underbrace{d_{1} \ldots, m_{m i} i})} \\
& \text { Recall, for a knot: } \\
& P(x)=\prod_{r \geq 1 ; i, j ; k \geq 0}\left(1-x^{r} a^{i} q^{j+2 k+1}\right)
\end{aligned}
$$

Knots-quivers correspondence

With appropriate identification of variables, generating function of colored HOMFLY-PT polynomials can be written in the form of motivic generating function, for some particular symmetric matrix C

$$
\begin{gathered}
P(x)=\sum_{r=0}^{\infty} \bar{P}_{r}(a, q) x^{r}=\sum_{d_{1}, \ldots, d_{m} \geq 0} q^{\sum_{i, j} C_{i, j} d_{i} d_{j}} x^{d_{1}+\ldots+d_{m}} \frac{\prod_{i=1}^{m} q^{l_{i} d_{i}} a^{a_{i} d_{i}}(-1)^{t_{i} d_{i}}}{\prod_{i=1}^{m}\left(q^{2} ; q^{2}\right) d_{i}} \\
x_{i}=x a^{a_{i}} q^{l_{i}-1}(-1)^{t_{i}}
\end{gathered}
$$

Knots-quivers correspondence

With appropriate identification of variables, generating function of colored HOMFLY-PT polynomials can be written in the form of motivic generating function, for some particular symmetric matrix C

$$
P(x)=\sum_{r=0}^{\infty} \bar{P}_{r}(a, q) x^{r}=\sum_{d_{1}, \ldots, d_{m} \geq 0} q^{\sum_{i, j} C_{i, j} d_{i} d_{j}} x^{d_{1}+\ldots+d_{m}} \frac{\prod_{i=1}^{m}}{\left.\prod_{i=1}^{m} q_{i}^{l d_{i}} a^{a_{i} d_{i}}(-1)^{t_{i}}\right)_{d_{i}}^{t_{i} d_{i}}}
$$

Note: infinite number of colored polynomials / LMOV invariants encoded in a finite number of parameters of a matrix C.

Knots-quivers correspondence

With appropriate identification of variables, generating function of colored HOMFLY-PT polynomials can be written in the form of motivic generating function, for some particular symmetric matrix C

$$
P(x)=\sum_{r=0}^{\infty} \bar{P}_{r}(a, q) x^{r}=\sum_{d_{1}, \ldots, d_{m} \geq 0} q^{\sum_{i, j} C_{i, j} d_{i} d_{j}} x^{d_{1}+\ldots+d_{m}} \frac{\prod_{i=1}^{m}}{\prod_{i=1}^{m} q_{i}^{l_{i} d_{i} a_{i} a_{i} d_{i}}(-1)^{\left.t_{i}\right)_{i} d_{i}}}
$$

Note: infinite number of colored polynomials / LMOV invariants encoded in a finite number of parameters of a matrix C.

Knots	Quivers
Homological degrees, framing	Number of loops

Knots-quivers correspondence

With appropriate identification of variables, generating function of colored HOMFLY-PT polynomials can be written in the form of motivic generating function, for some particular symmetric matrix C

$$
P(x)=\sum_{r=0}^{\infty} \bar{P}_{r}(a, q) x^{r}=\sum_{d_{1}, \ldots, d_{m} \geq 0} q^{\sum_{i, j} C_{i, j} d_{i} d_{j}} x^{d_{1}+\ldots+d_{m}} \frac{\prod_{i=1}^{m}}{\prod_{i=1}^{m} q_{i}^{l_{i} d_{i} a_{i} a_{i} d_{i}}(-1)^{\left.t_{i}\right)_{i} d_{i}}}
$$

Note: infinite number of colored polynomials / LMOV invariants encoded in a finite number of parameters of a matrix C.

Knots	Quivers
Homological degrees, framing	Number of loops
Colored HOMFLY-PT	Motivic generating series

Knots-quivers correspondence

With appropriate identification of variables, generating function of colored HOMFLY-PT polynomials can be written in the form of motivic generating function, for some particular symmetric matrix C

$$
P(x)=\sum_{r=0}^{\infty} \bar{P}_{r}(a, q) x^{r}=\sum_{d_{1}, \ldots, d_{m} \geq 0} q^{\sum_{i, j} C_{i, j} d_{i} d_{j}} x^{d_{1}+\ldots+d_{m}} \frac{\prod_{i=1}^{m}}{\left.\prod_{i=1}^{m} q_{i}^{l d_{i}} a^{a_{i} d_{i}}(-1)^{t_{i}}\right)_{d_{i}}^{t_{i} d_{i}}}
$$

Note: infinite number of colored polynomials / LMOV invariants encoded in a finite number of parameters of a matrix C.

Knots	Quivers
Homological degrees, framing	Number of loops
Colored HOMFLY-PT	Motivic generating series
LMOV invariants	Motivic DT-invariants $\in \mathbb{N}$

Knots-quivers correspondence

With appropriate identification of variables, generating function of colored HOMFLY-PT polynomials can be written in the form of motivic generating function, for some particular symmetric matrix C

$$
P(x)=\sum_{r=0}^{\infty} \bar{P}_{r}(a, q) x^{r}=\sum_{d_{1}, \ldots, d_{m} \geq 0} q^{\sum_{i, j} c_{i, j} d_{i} d_{j}} x^{d_{1}+\ldots+d_{m}} \frac{\prod_{i=1}^{m}}{\prod_{i=1}^{m} q_{i}^{l d_{i}} a^{a_{i} d_{i}}(-1)^{t_{i} d_{i} d_{i}} d_{i}}
$$

Note: infinite number of colored polynomials / LMOV invariants encoded in a finite number of parameters of a matrix C.

Knots	Quivers
Homological degrees, framing Colored HOMFLY-PT LMOV invariants $\in \mathbb{N}$	Number of loops
Motivic generating series	
Motivic DT-invariants $\in \mathbb{N}$	

Knots-quivers correspondence

With appropriate identification of variables, generating function of colored HOMFLY-PT polynomials can be written in the form of motivic generating function, for some particular symmetric matrix C

$$
P(x)=\sum_{r=0}^{\infty} \bar{P}_{r}(a, q) x^{r}=\sum_{d_{1}, \ldots, d_{m} \geq 0} q^{\sum_{i, j} c_{i, j} d_{i} d_{j}} x^{d_{1}+\ldots+d_{m}} \frac{\prod_{i=1}^{m} l_{i=1}^{l_{i} d_{i} a_{i} a_{i} d_{i}}(-1)^{t_{i} d_{i}}}{\prod_{i=1}^{m}\left(q^{2} ; q^{2} d_{i}\right.}
$$

Note: infinite number of colored polynomials / LMOV invariants encoded in a finite number of parameters of a matrix C.

Knots	Quivers
Homological degrees, framing	Number of loops
Colored HOMFLY-PT	Motivic generating series
LMOV invariants $\in \mathbb{N}$	Motivic DT-invariants $\in \mathbb{N}$
Classical LMOV invariants	Numerical DT-invariants

Knots-quivers correspondence

With appropriate identification of variables, generating function of colored HOMFLY-PT polynomials can be written in the form of motivic generating function, for some particular symmetric matrix C

$$
P(x)=\sum_{r=0}^{\infty} \bar{P}_{r}(a, q) x^{r}=\sum_{d_{1}, \ldots, d_{m} \geq 0} q^{\sum_{i, j} c_{i, j} d_{i} d_{j}} x^{d_{1}+\ldots+d_{m}} \frac{\prod_{i=1}^{m} l_{i=1}^{l_{i} d_{i} a_{i} a_{i} d_{i}}(-1)^{t_{i} d_{i}}}{\prod_{i=1}^{m}\left(q^{2} ; q^{2} d_{i}\right.}
$$

Note: infinite number of colored polynomials / LMOV invariants encoded in a finite number of parameters of a matrix C.

Knots	Quivers
Homological degrees, framing	Number of loops
Colored HOMFLY-PT	Motivic generating series
LMOV invariants $\in \mathbb{N}$	Motivic DT-invariants $\in \mathbb{N}$
Classical LMOV invariants	Numerical DT-invariants
Algebra of BPS states	Cohom. Hall Algebra

Quivers and HOMFLY-PT homology

Recall - colored HOMFLY-PT polynomials arise as Euler characteristics of coloured HOMFLY-PT homologies:

$$
P_{r}(a, q)=P_{r}(a, q,-1)=\sum_{i, j, k} a^{i} q^{j}(-1)^{k} \operatorname{dim} \mathcal{H}_{i j k}^{S^{r}}(K) .
$$

Some homological information is encoded in superpolynomials:

$$
P_{r}(a, q, t)=\sum_{i, j, k} a^{i} q^{j} t^{k} \operatorname{dim} \mathcal{H}_{i j k}^{S^{r}}(K) \equiv \sum_{i \in \mathscr{G}_{r}(K)} a^{a_{i}^{(r)}} q^{q_{i}^{(r)}} t^{t_{i}^{(r)}}
$$

Quivers and HOMFLY-PT homology

Recall - colored HOMFLY-PT polynomials arise as Euler characteristics of coloured HOMFLY-PT homologies:

$$
P_{r}(a, q)=P_{r}(a, q,-1)=\sum_{i, j, k} a^{i} q^{j}(-1)^{k} \operatorname{dim} \mathcal{H}_{i j k}^{S^{r}}(K) .
$$

Some homological information is encoded in superpolynomials:

$$
P_{r}(a, q, t)=\sum_{i, j, k} a^{i} q^{j} t^{k} \operatorname{dim} \mathcal{H}_{i j k}^{S^{r}}(K) \equiv \sum_{i \in \mathscr{G}_{r}(K)} a^{a_{i}^{(r)}} q^{q_{i}^{(r)}} t^{t_{i}^{(r)}}
$$

Homological diagram ${ }^{0}$ for figure-8 knot

$$
\lambda_{i}=a^{a_{i} q^{q_{i}-t_{i}}(-t)^{t_{i}}}
$$

Quivers and HOMFLY-PT homology

Recall - colored HOMFLY-PT polynomials arise as Euler characteristics of coloured HOMFLY-PT homologies:

$$
P_{r}(a, q)=P_{r}(a, q,-1)=\sum_{i, j, k} a^{i} q^{j}(-1)^{k} \operatorname{dim} \mathcal{H}_{i j k}^{s^{r}}(K) .
$$

Some homological information is encoded in superpolynomials:

$$
P_{r}(a, q, t)=\sum_{i, j, k} a^{i} q^{j} t^{k} \operatorname{dim} \mathcal{H}_{i j k}^{S^{r}}(K) \equiv \sum_{i \in \mathscr{G}_{r}(K)} a^{a_{i}^{(r)}} q^{q_{i}^{(r)}} t^{t_{i}^{(r)}}
$$

Homological diagram ${ }^{0}$ for figure-8 knot

$$
x_{i}=x \lambda_{i}, \quad \lambda_{i}=a^{a_{i}} q^{q_{i}-t_{i}}(-t)^{t_{i}}
$$

Relation to quivers:

$$
t_{i}^{(1)} \equiv t_{i}=C_{i, i}
$$

Examples

Colored polynomial for trefoil: $P_{r}(a, q)=\frac{a^{2 r}}{q^{2 r}} \sum_{k=0}^{r}\left[\begin{array}{l}r \\ k\end{array}\right]^{2 k(r+1)} \prod_{i=1}^{k}\left(1-a^{2} q^{2(i-2)}\right)$.

Examples

Colored polynomial for trefoil: $P_{r}(a, q)=\frac{a^{2 r}}{q^{2 r}} \sum_{k=0}^{r}\left[\begin{array}{l}r \\ k\end{array}\right] q^{2 k(r+1)} \prod_{i=1}^{k}\left(1-a^{2} q^{2(i-2)}\right)$,
Quiver form follows from:

$$
\left[\begin{array}{c}
r \\
k
\end{array}\right]\left(\frac{a^{2}}{q^{2}} ; q^{2}\right)_{k}=\sum_{i=0}^{k} \frac{\left(q^{2} ; q^{2}\right)_{r}\left(-\frac{a^{2}}{q^{2}}\right)^{i} q^{i(i-1)}}{\left(q^{2} ; q^{2}\right)_{r-k}\left(q^{2} ; q^{2}\right)_{i}\left(q^{2} ; q^{2}\right)_{k-i}} .
$$

We find: $\quad C^{T_{2,3}}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3\end{array}\right]$

Examples - torus knots

Colored polynomial for trefoil: $P_{r}(a, q)=\frac{a^{2 r}}{q^{2 r}} \sum_{k=0}^{r}\left[\begin{array}{l}r \\ k\end{array}\right] q^{2 k(r+1)} \prod_{i=1}^{k}\left(1-a^{2} q^{2(i-2)}\right)$
Quiver form follows from:

$$
\left[\begin{array}{c}
r \\
k
\end{array}\right]\left(\frac{a^{2}}{q^{2}} ; q^{2}\right)_{k}=\sum_{i=0}^{k} \frac{\left(q^{2} ; q^{2}\right)_{r}\left(-\frac{a^{2}}{q^{2}}\right)^{i} q^{i(i-1)}}{\left(q^{2} ; q^{2}\right)_{r-k}\left(q^{2} ; q^{2}\right)_{i}\left(q^{2} ; q^{2}\right)_{k-i}} .
$$

We find: $\quad C^{T_{2,3}}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3\end{array}\right]$

$(2,5)$ torus knot: $\quad C^{T_{2,5}}=\left[\begin{array}{lllll}0 & 1 & 1 & 3 & 3 \\ 1 & 2 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 & 4 \\ 3 & 3 & 4 & 4 & 5\end{array}\right]$

Examples - torus knots

$$
C^{T_{3,4}}=\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 5 \\
1 & 2 & 3 & 3 & 5 \\
2 & 3 & 4 & 4 & 5 \\
3 & 3 & 4 & 4 & 5 \\
5 & 5 & 5 & 5 & 6
\end{array}\right]
$$

Examples -62 knot

$$
C^{6_{2}}=\left[\begin{array}{ccccccccccc}
-2 & -2 & -1 & -1 & -1 & -1 & 0 & -1 & 1 & 1 & 1 \\
-2 & -1 & -1 & 0 & 0 & 0 & 1 & 0 & 1 & 2 & 2 \\
-1 & -1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 2 & 2 \\
-1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 2 & 1 & 1 \\
-1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 \\
-1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 \\
0 & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 2 & 2 & 2 \\
-1 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 3 & 3 \\
1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 \\
1 & 2 & 2 & 1 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \\
1 & 2 & 2 & 1 & 2 & 2 & 2 & 3 & 3 & 3 & 4
\end{array}\right]
$$

Examples - 63 knot

$$
C^{6_{3}}=\left[\begin{array}{ccccccccccccc}
0 & 0 & 0 & -1 & -1 & 0 & 0 & -1 & -1 & 0 & 0 & -1 & -1 \\
0 & 1 & 0 & -1 & -2 & 1 & 0 & -1 & -2 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & -1 & -2 & 1 & 0 & 0 & -2 & 1 & 1 & 0 & 0 \\
-1 & -1 & -1 & -2 & -3 & 0 & -1 & -2 & -3 & -1 & 0 & -2 & -2 \\
-1 & -2 & -2 & -3 & -3 & -1 & -1 & -2 & -3 & -1 & -1 & -2 & -2 \\
0 & 1 & 1 & 0 & -1 & 2 & 1 & 0 & -1 & 2 & 1 & 1 & -1 \\
0 & 0 & 0 & -1 & -1 & 1 & 1 & 0 & -1 & 2 & 1 & 1 & 0 \\
-1 & -1 & 0 & -2 & -2 & 0 & 0 & -1 & -2 & 0 & 0 & -1 & -2 \\
-1 & -2 & -2 & -3 & -3 & -1 & -1 & -2 & -2 & 0 & -1 & -1 & -2 \\
0 & 1 & 1 & -1 & -1 & 2 & 2 & 0 & 0 & 3 & 2 & 1 & 0 \\
0 & 1 & 1 & 0 & -1 & 1 & 1 & 0 & -1 & 2 & 2 & 1 & 0 \\
-1 & 0 & 0 & -2 & -2 & 1 & 1 & -1 & -1 & 1 & 1 & 0 & -1 \\
-1 & -1 & 0 & -2 & -2 & -1 & 0 & -2 & -2 & 0 & 0 & -1 & -1
\end{array}\right]
$$

Quivers determined for:

- all knots up to 6 crossings
- $(2,2 p+1)$ torus knots, for all p
- $(2,2 p)$ torus links
- $(3,3 p+1)$ and $(3,3 p+2)$ torus knots
- an infinite family of twist knots
- an infinite family of rational and arborescent knots (Stosic-Wedrich)

How unique is the correspondence?

Knot	
Unknot	0_{1}
	3_{1}
	5_{1}
	7_{1}
Torus knots $T_{2,2 p+1}$	9_{1}
	11_{1}
	13_{1}
	15_{1}
\vdots	$(2 p+1)_{1}$
	4_{1}
Twists knots $T K_{2\|p\|+2}$	6_{1}
	8_{1}
Twists knots $T K_{2 p+1}$	5_{2}
	7_{2}
Stand-alone examples	6_{2}
	6_{3}
	7_{3}

Equivalent quivers

1
1
3
13
68
405
2684
19557
\vdots
$\sim 2 p!$
2
141
36555
12
1983
3534
142368
109636

Local equivalence

arXiv: 2105.11806

Theorem 6. Consider a quiver Q corresponding to the knot K and another symmetric quiver Q^{\prime} such that $Q_{0}^{\prime}=Q_{0}$ and $\lambda_{i}^{\prime}=\lambda_{i} \forall i \in Q_{0}$ (λ_{i} comes from the knots-quivers change of variables). If Q and Q^{\prime} are related by a sequence of disjoint transpositions, each exchanging non-diagonal elements

$$
C_{a b} \leftrightarrow C_{c d}, \quad C_{b a} \leftrightarrow C_{d c},
$$

for some pairwise different $a, b, c, d, \in Q_{0}$, such that

$$
\lambda_{a} \lambda_{b}=\lambda_{c} \lambda_{d}
$$

and

$$
C_{a b}=C_{c d}-1, \quad C_{a i}+C_{b i}=C_{c i}+C_{d i}-\delta_{c i}-\delta_{d i}, \quad \forall i \in Q_{0},
$$

or

$$
C_{c d}=C_{a b}-1, \quad C_{c i}+C_{d i}=C_{a i}+C_{b i}-\delta_{a i}-\delta_{b i}, \quad \forall i \in Q_{0},
$$

then Q and Q^{\prime} are equivalent in the sense of the definition 4.

Local equivalence

Proof: follows from comparison of quiver generating series $P(x)$ for Q and Q^{\prime}. Agreement at the order x^{2} leads to the center of mass condition (i.e. the center of mass for nodes (a, b) coincides with the center of mass for nodes ($c, d)$).

$$
\lambda_{a} \lambda_{b}=\lambda_{c} \lambda_{d}
$$

Local equivalence

Proof: follows from comparison of quiver generating series $P(x)$ for Q and Q^{\prime}. Agreement at the order x^{2} leads to the center of mass condition (i.e. the center of mass for nodes (a, b) coincides with the center of mass for nodes ($c, d)$).

$$
\lambda_{a} \lambda_{b}=\lambda_{c} \lambda_{d}
$$

Agreement at the order x^{3} leads to the conditions of the form:

$$
C_{a b}=C_{c d}-1, \quad C_{a i}+C_{b i}=C_{c i}+C_{d i}-\delta_{c i}-\delta_{d i}, \quad \forall i \in Q_{0}
$$

Local equivalence

Proof: follows from comparison of quiver generating series $P(x)$ for Q and Q^{\prime}. Agreement at the order x^{2} leads to the center of mass condition (i.e. the center of mass for nodes (a, b) coincides with the center of mass for nodes ($c, d)$).

$$
\lambda_{a} \lambda_{b}=\lambda_{c} \lambda_{d}
$$

Agreement at the order x^{3} leads to the conditions of the form:

$$
C_{a b}=C_{c d}-1, \quad C_{a i}+C_{b i}=C_{c i}+C_{d i}-\delta_{c i}-\delta_{d i}, \quad \forall i \in Q_{0}
$$

The agreement at the order x^{3} asserts the agreement to all orders, as follows from the multi-cover skein relation.
[Ekholm-Kucharski-Longhi, arXiv: 1910.06193]

Local equivalence

Verifying systematically conditions from the above theorem, we can identify all equivalent quivers associated to a given knot.

$$
\left[\begin{array}{ccccc}
0 & -1 & -1 & 0 & 0 \\
-1 & -2 & -2 & -1 & 0 \\
-1 & -2 & -1 & -1 & 0 \\
0 & -1 & -1 & 1 & 1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] 0-\left[\begin{array}{ccccc}
0 & -1 & -1 & 0 & 0 \\
-1 & -2 & -2 & -1 & -1 \\
-1 & -2 & -1 & 0 & 0 \\
0 & -1 & 0 & 1 & 1 \\
0 & -1 & 0 & 1 & 2
\end{array}\right]
$$

Local equivalence

Verifying systematically conditions from the above theorem, we can identify all equivalent quivers associated to a given knot.

$\left[\begin{array}{lllll}0 & 1 & 1 & 3 & 2 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 3 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 & 4 \\ 2 & 3 & 4 & 4 & 5\end{array}\right] \quad\left[\begin{array}{lllll}0 & 1 & 1 & 3 & 3 \\ 1 & 2 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 & 4 \\ 3 & 3 & 4 & 4 & 5\end{array}\right] \quad\left[\begin{array}{lllll}0 & 1 & 1 & 3 & 3 \\ 1 & 2 & 2 & 3 & 4 \\ 1 & 2 & 3 & 3 & 4 \\ 3 & 3 & 3 & 4 & 4 \\ 3 & 4 & 4 & 4 & 5\end{array}\right]$

Local equivalence

Verifying systematically conditions from the above theorem, we can identify all equivalent quivers associated to a given knot.

52

Local equivalence

Verifying systematically conditions from the above theorem, we can identify all equivalent quivers associated to a given knot.

Local equivalence

Verifying systematically conditions from the above theorem, we can identify all equivalent quivers associated to a given knot.

Global structure

Global structure

Instead of analyzing quiver matrices, consider the structure of quiver generating series. We find that in general it takes form

$$
P_{K}(x, a, q, t)=\left.\sum_{\check{d}_{1}, \ldots, \check{d}_{m-n} \geq 0}(-q)^{\sum_{i, j} \check{C}_{i j} \check{d}_{i} \check{d}_{j}} \frac{\check{x}_{1}^{\breve{d}_{1}} \cdots \check{x}_{m-n}^{\check{d}_{m-n}}}{\left(q^{2} ; q^{2}\right)_{\check{d}_{1}} \cdots\left(q^{2} ; q^{2}\right)_{\check{d}_{m-n}}} \Pi_{\check{d}_{1}, \ldots, \check{d}_{n}}\right|_{\check{x}_{i}=x \check{\lambda}_{i}}
$$

where \check{C} is a matrix of a subquiver, and the last piece takes form

$$
\frac{\Pi_{\breve{d}_{1}, \ldots, \check{d}_{n}}}{\left(q^{2} ; q^{2}\right)_{\breve{d}_{1}} \cdots\left(q^{2} ; q^{2}\right)_{\breve{d}_{n}}}=\sum_{\check{d}_{1}=\alpha_{1}+\beta_{1}} \ldots \sum_{\check{d}_{n}=\alpha_{n}+\beta_{n}} \frac{(-q)^{2 \sum_{i<j} \beta_{i} \alpha_{j}+\pi_{2}\left(\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{n}\right)} \kappa^{\beta_{1}+\ldots+\beta_{n}}}{\left(q^{2} ; q^{2}\right)_{\alpha_{1}}\left(q^{2} ; q^{2}\right)_{\beta_{1}} \cdots\left(q^{2} ; q^{2}\right)_{\alpha_{n}}\left(q^{2} ; q^{2}\right)_{\beta_{n}}}
$$

Global structure

Instead of analyzing quiver matrices, consider the structure of quiver generating series. We find that in general it takes form

$$
P_{K}(x, a, q, t)=\left.\sum_{\check{d}_{1}, \ldots, \check{d}_{m-n} \geq 0}(-q)^{\sum_{i, j} \check{C}_{i j} \check{d}_{i} \check{d}_{j}} \frac{\check{x}_{1}^{\breve{d}_{1}} \cdots \check{x}_{m-n}^{\check{d}_{m-n}}}{\left(q^{2} ; q^{2}\right)_{\check{d}_{1}} \cdots\left(q^{2} ; q^{2}\right)_{\check{d}_{m-n}}} \Pi_{\check{d}_{1}, \ldots, \check{d}_{n}}\right|_{\check{x}_{i}=x \check{\lambda}_{i}}
$$

where \check{C} is a matrix of a subquiver, and the last piece takes form

$$
\frac{\Pi_{\breve{d}_{1}, \ldots, \check{d}_{n}}}{\left(q^{2} ; q^{2} \check{d}_{1} \cdots\left(q^{2} ; q^{2}\right)_{\check{d}_{n}}\right.}=\sum_{\check{d}_{1}=\alpha_{1}+\beta_{1}} \ldots \sum_{\check{d}_{n}=\alpha_{n}+\beta_{n}} \frac{(-q)^{2} \sum_{i<j} \beta_{i} \alpha_{j}+\pi_{2}\left(\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{n}\right) \kappa^{\beta_{1}+\ldots+\beta_{n}}}{\left(q^{2}\right)_{\alpha_{1}}\left(q^{2} ; q^{2}\right)_{\beta_{1}} \cdots\left(q^{2} ; q^{2}\right)_{\alpha_{n}}\left(q^{2} ; q^{2}\right)_{\beta_{n}}}
$$

Recall: a permutation σ is determined by a set of its inversions, i.e. a set of all pairs $(\sigma(i), \sigma(j))$ such that $i<j$ and $\sigma(i)>\sigma(j)$. Such a set of inversions is encoded in the term $\sum_{i<j} \beta_{i} \alpha_{j}$

Global structure

Instead of analyzing quiver matrices, consider the structure of quiver generating series. We find that in general it takes form

$$
P_{K}(x, a, q, t)=\sum_{\tilde{d}_{1}, \ldots, \tilde{d}_{m-n} \geq 0}(-q)^{\sum_{i, j} \tilde{C}_{i j} \tilde{d}_{i} \check{d}_{j}} \frac{\check{x}_{1}^{\tilde{d}_{1}} \cdots \dot{x}_{m-n}^{\tilde{d}_{m-n}}}{\left.\left(q^{2} ; q^{2}\right)_{\tilde{d}_{1}}^{\left.\cdots\left(q^{2} ; q^{2}\right)\right)_{\tilde{d}_{m-n}}} \Pi_{\tilde{d}_{1}, \ldots, \tilde{d}_{n}}\right|_{\tilde{x}_{i}=x \tilde{x}_{i}}}
$$

where \check{C} is a matrix of a subquiver, and the last piece takes form

Recall: a permutation σ is determined by a set of its inversions, i.e. a set of all pairs ($\sigma(i), \sigma(j)$) such that $i<j$ and $\sigma(i)>\sigma(j)$. Such a set of inversions is encoded in the term $\sum_{i<j} \beta_{i} \alpha_{j}$

It follows that various identifications of indices lead to a permutohedron of equivalent quivers!

Global structure

Such structures arise from the following formula for

$$
\Pi_{\check{d}_{1}, \ldots, \check{d}_{n}}=\left(\xi ; q^{2}\right)_{\check{d}_{1}+\ldots+\check{d}_{n}}
$$

(or its generalizations):

$$
\begin{aligned}
& \frac{\left(\xi ; q^{2}\right)_{\check{d}_{1}+\ldots+\check{d}_{n}}^{\left(q^{2} ; q^{2}\right)_{\breve{d}_{1}} \cdots\left(q^{2} ; q^{2}\right)_{\check{d}_{n}}}=}{} \sum_{\alpha_{1}+\beta_{1}=\check{d}_{1}} \ldots \sum_{\alpha_{n}+\beta_{n}=\check{d}_{n}}(-q)^{\beta_{1}^{2}+\ldots+\beta_{n}^{2}+2 \sum_{i=1}^{n-1} \beta_{i+1}\left(\check{d}_{1}+\ldots+\check{d}_{i}\right)} \times \\
& \times \frac{\left(\xi q^{-1}\right)^{\beta_{1}+\cdots+\beta_{n}}}{\left(q^{2} ; q^{2}\right)_{\alpha_{1}}\left(q^{2} ; q^{2}\right)_{\beta_{1}} \cdots\left(q^{2} ; q^{2}\right)_{\alpha_{n}}\left(q^{2} ; q^{2}\right)_{\beta_{n}}},
\end{aligned}
$$

Global structure

Such structures arise from the following formula for

$$
\Pi_{\breve{d}_{1}, \ldots, \check{d}_{n}}=\left(\xi ; q^{2}\right)_{\check{d}_{1}+\ldots+\check{d}_{n}}
$$

(or its generalizations):

$$
\begin{aligned}
\frac{\left(\xi ; q^{2}\right)_{\check{d}_{1}+\ldots}+\ldots \check{d}_{n}}{\left(q^{2} ; q^{2}\right)_{\check{d}_{1}}^{\cdots} \cdots\left(q^{2} ; q^{2}\right)_{\check{d}_{n}}}= & \sum_{\alpha_{1}+\beta_{1}=\check{d}_{1}} \cdots \sum_{\alpha_{n}+\beta_{n}=\check{d}_{n}}(-q)^{\beta_{1}^{2}+\ldots+\beta_{n}^{2}+2 \sum_{i=1}^{n-1} \beta_{i+1}\left(\tilde{d}_{1}+\ldots+\check{d}_{i}\right)} \times \\
& \times \frac{\left(q^{2} ; q^{2}\right)_{\alpha_{1}}\left(q^{2} ; q^{2}\right)_{\beta_{1}} \cdots\left(q^{2} ; q^{2}\right)_{\alpha_{n}}\left(q^{2} ; q^{2}\right)_{\beta_{n}}}{\beta_{1}+\cdots+\beta_{n}},
\end{aligned}
$$

Such form of quiver generating functions follows from constraints in the local equivalence theorem.

Global structure

We refer to the subquiver mentioned above as a "prequiver".
The full quiver is determined from a sub quiver by permutation and a pair of integers (k, l), in the operation called "splitting".

Global structure

In general, there are several equivalent formulas for a given HOMFLY-PT generating function, and each of them gives rise to one permutohedron. Altogether we obtain a large permutohedron graph.

Global structure - examples

In this case permutohedron graph is made of 3 permutohedra Π_{3}.

52

Global structure - examples

For $(2,2 p+1)$ torus knots, permutohedron graph is made of two chains of larger and larger permutohedra.

51

Global structure - examples

For $(2,2 p+1)$ torus knots, permutohedron graph is made of two chains of larger and larger permutohedra.

Global structure - examples

For $(2,2 p+1)$ torus knots, permutohedron graph is made of two chains of larger and larger permutohedra.

91

Global structure - examples

For $(2,2 p+1)$ torus knots, permutohedron graph is made of two chains of larger and larger permutohedra.

Global structure - examples

61

Summary

- Knots-quivers correspondence, motivated by string theory, relates knot theory and quiver representation theory
- It turns out that many quivers may be associated to a given knot
- They are parametrized by vertices of a permutohedron graph
- This indicates some interesting structure of the underlying HOMFLY-PT homology, and of the corresponding LMOV (motivic DT) invariants

FNP

Summary

Future directions and related developments:

- identify permutohedra for rational and arborescent knots (following Stosic-Wedrich, arXiv: 1711.03333, 2004.10837)
- develop open topological string interpretation (following Ekholm-Kucharski-Longhi, arXiv: 1811.03110, 1910.06193)
- conduct analogous analysis for other underlying toric Calabi-Yau manifolds (following Kimura-Panfil-Sugimoto-PS , arXiv: 1811.03556, 2011.06783)

FNP
 Foundation for Polish Science

