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Permutohedron:	(n-1)-dimensional	polytope	whose	verJces	represent		
permutaJons	of	n	objects,	and	edges	correspond	to	transposiJons	of	
adjacent	neighbours.	
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10-dim		=		R4 x

Superstring	theory	–	effecJve	theory	in	4-dim	follows	from	
compacJficaJon	of	10-dim	string	theory	on	a	Calabi-Yau	manifold.	

(Beyond)	Standard	Model	theory
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Polynomial	knot	invariants	from	Wilson	loop	observables:	

HOMFLY-PT	polynomial	for	SU(N)	gauge	group:

Jones	polynomial	for	SU(2),	Alexander	polynomial	for	a=1

Chern-Simons	gauge	theory	–	3-dim	TQFT	[WiGen,	1989]:	

Chern-Simons	theory



T*S3

Singular	conifold:	
x2	+	y2	+	z2	+	w2	=	0

Topological	strings	and	open-closed	duality	
Chern-Simons	theory	on	S3	arises	as	an	effecJve	descripJon	of	A-model	open		
topological	string	theory	in	deformed	conifold	T*S3,	with	appropriate	boundary	
condiJons	(N	branes)	on	S3	(WiGen,	1993).
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Ooguri-Vafa	(LMOV)	invariants
Brane	amplitude	as	generaJng	funcJon	of	colored	polynomials:
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Knots-quivers	correspondence
Kucharski-Reineke-Stosic-PS	(arXiv:	1707.02991,	1707.04017)	

BPS	states	enumerated	by	LMOV	invariants	are	bound	states	of	
certain	“elementary”	states,	whose	interacJons	are	encoded	in	a	
quiver	diagram.	Nodes	of	a	quiver	correspond	to	those	
“elementary”	states,	and	arrows	to	interacJons.	

Calabi-Yau	
descripJon	

SpaceJme	
descripJon	
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With	appropriate	idenJficaJon	of	variables,	generaJng	funcJon	of	
colored	HOMFLY-PT	polynomials	can	be	wriben	in	the	form	of	
moJvic	generaJng	funcJon,	for	some	parJcular	symmetric	matrix	C
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Recall	–	colored	HOMFLY-PT	polynomials	arise	as	Euler	
characterisJcs	of	coloured	HOMFLY-PT	homologies:

Some	homological	informaJon	is	encoded	in	superpolynomials:
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Quivers	and	HOMFLY-PT	homology
Recall	–	colored	HOMFLY-PT	polynomials	arise	as	Euler	
characterisJcs	of	coloured	HOMFLY-PT	homologies:

Some	homological	informaJon	is	encoded	in	superpolynomials:

Homological	diagram		
for	figure-8	knot RelaJon	to	quivers:



Examples

Colored	polynomial	for	trefoil:



Examples

Colored	polynomial	for	trefoil:

Quiver	form	follows	from:

We	find:



Examples	–	torus	knots

Colored	polynomial	for	trefoil:

Quiver	form	follows	from:

We	find:

(2,5)	torus	knot:



Examples	–	torus	knots
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Examples	–	63	knot



Quivers	determined	for:

- all	knots	up	to	6	crossings	
- (2,2p+1)	torus	knots,	for	all	p	
- (2,2p)	torus	links	
- (3,3p+1)	and	(3,3p+2)	torus	knots	
- an	infinite	family	of	twist	knots	
- an	infinite	family	of	raJonal	and	arborescent	knots		

(Stosic-Wedrich)



How	unique	is	the	correspondence?





Local	equivalence
arXiv:	2105.11806



Local	equivalence
Proof:	follows	from	comparison	of	quiver	generaJng	series	P(x)		
for	Q	and	Q’.	Agreement	at	the	order	x2	leads	to	the	center	of	mass	
condiJon	(i.e.	the	center	of	mass	for	nodes	(a,b)	coincides	with	the	
center	of	mass	for	nodes	(c,d)).
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center	of	mass	for	nodes	(c,d)).

Agreement	at	the	order	x3	leads	to	the	condiJons	of	the	form:

The	agreement	at	the	order	x3	asserts	the	agreement	to	all	orders,	
as	follows	from	the	mulJ-cover	skein	relaJon.		
[Ekholm-Kucharski-Longhi,	arXiv:	1910.06193]



Local	equivalence
Verifying	systemaJcally	condiJons	from	the	above	theorem,	we	can	
idenJfy	all	equivalent	quivers	associated	to	a	given	knot.	
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Instead	of	analyzing	quiver	matrices,	consider	the	structure		
of	quiver	generaJng	series.	We	find	that	in	general	it	takes	form
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Such	a	set	of	inversions	is	encoded	in	the	term		
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where						is	a	matrix	of	a	subquiver,	and	the	last	piece	takes	form	

It	follows	that	various	idenJficaJons	of	indices	lead		
to	a	permutohedron	of	equivalent	quivers!		
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Global	structure
Such	structures	arise	from	the	following	formula	for	
		
(or	its	generalizaJons):	

Such	form	of	quiver	generaJng	funcJons	follows	from		
constraints	in	the	local	equivalence	theorem.	



Global	structure
We	refer	to	the	subquiver	menJoned	above	as	a	``prequiver’’.		
The	full	quiver	is	determined	from	a	sub	quiver	by	permutaJon		
and	a	pair	of	integers	(k,l),	in	the	operaJon	called	``splixng’’.



Global	structure

In	general,	there	are	several	equivalent	formulas	for	a	given		
HOMFLY-PT	generaJng	funcJon,	and	each	of	them	gives	rise		
to	one	permutohedron.	Altogether	we	obtain	a	large		
permutohedron	graph.



Global	structure	–	examples

In	this	case	permutohedron	graph	is	made	of	3	permutohedra	∏3.

52



51

Global	structure	–	examples
For	(2,2p+1)	torus	knots,	permutohedron	graph	is	made	of	two		
chains	of	larger	and	larger	permutohedra.



Global	structure	–	examples
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For	(2,2p+1)	torus	knots,	permutohedron	graph	is	made	of	two		
chains	of	larger	and	larger	permutohedra.



Global	structure	–	examples
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For	(2,2p+1)	torus	knots,	permutohedron	graph	is	made	of	two		
chains	of	larger	and	larger	permutohedra.



Global	structure	–	examples
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For	(2,2p+1)	torus	knots,	permutohedron	graph	is	made	of	two		
chains	of	larger	and	larger	permutohedra.



Global	structure	–	examples
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Summary

- Knots-quivers	correspondence,	moJvated	by	string	theory,	
relates	knot	theory	and	quiver	representaJon	theory		

- It	turns	out	that	many	quivers	may	be	associated	to	a	given	knot		
- They	are	parametrized	by	verJces	of	a	permutohedron	graph	
- This	indicates	some	interesJng	structure	of	the	underlying	

HOMFLY-PT	homology,	and	of	the	corresponding	LMOV	(moJvic	
DT)	invariants



Summary

Future	direcJons	and	related	developments:	
- idenJfy	permutohedra	for	raJonal	and	arborescent	knots	

(following	Stosic-Wedrich,	arXiv:	1711.03333,	2004.10837)	
- develop	open	topological	string	interpretaJon	(following	Ekholm-

Kucharski-Longhi,	arXiv:	1811.03110,	1910.06193)	
- conduct	analogous	analysis	for	other	underlying	toric	Calabi-Yau	

manifolds	(following	Kimura-Panfil-Sugimoto-PS	,	arXiv:	
1811.03556,	2011.06783)


