Algebraic and combinatorial perspectives in mathematical sciences

Topological recursion from an algebraic perspective

Gaëtan Borot HU Berlin Oct. 2, 2020 I. Bottom-up: how 2d topology arises from algebra

II. Two examples: 2d TQFT and Virasoro constraints

III. Topological expansions in hermitian matrix models

IV. Top-down: from geometric to topological recursion

How 2d topology arises from algebra

I. How 2d topology arises from algebra — Airy structures

Let V be a vector space over $\mathbb C$

Choose a basis of linear coordinates $(x_i)_{i \in I}$

The Weyl algebra is the graded algebra of differential operators on ${\it V}$

$$\mathcal{W}_{V}^{\hbar} = \mathbb{C}[\hbar]\langle x_i, \hbar \partial_{x_i} \ i \in I \rangle$$
 $\deg x_i = \deg \hbar \partial x_i = 1$ $\deg \hbar = 2$

An **Airy structure** is a linear map $L:V o \mathcal W_V^\hbar$ such that

deg 1 condition : $L_i = \hbar \partial_{x_i} + O(2)$

ideal condition : $[L(V),L(V)]\subset \hbar \mathcal{W}_V^\hbar \cdot L(V)$

I. How 2d topology arises from algebra — Airy structures

Let V be a vector space over $\mathbb C$

Choose a basis of linear coordinates $(x_i)_{i \in I}$

The Weyl algebra is the graded algebra of differential operators on ${\it V}$

$$\mathcal{W}_{V}^{\hbar} = \mathbb{C}[\hbar]\langle x_i, \hbar \partial_{x_i} \ i \in I \rangle$$
 $\deg x_i = \deg \hbar \partial x_i = 1$ $\deg \hbar = 2$

An **Airy structure** is a linear map $L:V o \mathcal W_V^\hbar$ such that

deg 1 condition : $L_i = \hbar \partial_{x_i} + O(2)$

ideal condition : $[L(V),L(V)]\subset \hbar \mathcal{W}_V^\hbar \cdot L(V)$

I. How 2d topology arises from algebra — Airy structures

An **Airy structure** is a linear map $L:V o \mathcal W_V^\hbar$ such that

deg 1 condition: $L_i = \hbar \partial_{x_i} + O(2)$ (uniqueness)

ideal condition : $[L(V), L(V)] \subset \hbar W_V^{\hbar} \cdot L(V)$ (existence)

Theorem 1 (Kontsevich, Soibelman 17)

There exists a unique $F=\sum_{\substack{g\geq 0\\n\geq 1}}\frac{\hbar^{g-1}}{n!}\,F_{g,n}$ with $F_{g,n}\in \mathrm{Sym}^nV^*$ such that

 $\forall i$ $L_i \cdot e^F = 0$ and $F_{0,1} = 0, F_{0,2} = 0$

 e^F is called the partition function

I. How 2d topology arises from algebra — Partition function

Assume L_i has max. degree 2

$$L_i = \hbar \partial_{x_i} - \sum_{a,b} \left(\frac{1}{2} A_{a,b}^i x_a x_b + B_{a,b}^i x_a \hbar \partial_{x_b} + \frac{1}{2} C_{a,b}^i \hbar^2 \partial_{x_a} \partial_{x_b} \right) - \hbar D^i$$

and decompose
$$F_{g,n} = \sum_{i_1,\dots,i_n} F_{g,n}[i_1,\dots,i_n] x_{i_1} \cdots x_{i_n}$$

Let's compute $e^{-F}L_i \cdot e^F = 0$

$$\left[\hbar^0 \, \frac{x_j x_k}{2}\right] \qquad F_{0,3}[i,j,k] - A_{j,k}^i = 0$$

$$[\hbar \cdot 1]$$
 $F_{1,1}[i] - D^i = 0$

$$\begin{bmatrix}
\hbar^{g} \frac{x_{i_{2}} \cdots x_{i_{n}}}{(n-1)!} \end{bmatrix} F_{g,n}[i, i_{2}, \dots, i_{n}] - \left(\sum_{a} \sum_{m=2} B_{i_{m}, a}^{i} F_{g, n-1}[a, i_{2}, \dots, \widehat{i_{m}}, \dots, i_{n}] \right) \\
+ \frac{1}{2} \sum_{a, b} C_{a, b}^{i} \left(F_{g-1, n+1}[a, b, i_{2}, \dots, i_{n}] + \sum_{\substack{I \sqcup I' = \{i_{2}, \dots, i_{n}\}\\h+h'=g}} F_{h, 1+|J|}[a, I] F_{h', 1+|J'|}[b, I'] \right) = 0$$

I. How 2d topology arises from algebra — Partition function

$$F_{g,n}[i,i_2,\ldots,i_n] - \left(\sum_{a} \sum_{m=2} B^i_{i_m,a} F_{g,n-1}[a,i_2,\ldots,\widehat{i_m},\ldots,i_n] + \sum_{\substack{l \leq i_2,\ldots,i_n \\ h+h'=g}} F_{h,1+|J|}[a,I] F_{h',1+|J'|}[b,I']\right) = 0$$

Take Σ smooth oriented surface, genus g, n labeled boundaries

P pair of pants with labeled boundaries

The terms in the bracket are in bijection with

$$\overline{\mathcal{P}}_{\Sigma} = \Big\{ P \hookrightarrow \Sigma \text{ such that } \partial_1 P = \partial_1 \Sigma \text{ and } \Sigma - P \text{ stable} \Big\} \Big/ \operatorname{Diff}_{\Sigma}^{\partial}$$

$$= \bigcup_{m=2}^n \Big\{ \dots \text{ with } \partial_2 P = \partial_m \Sigma \Big\} \cup \Big\{ \dots \text{ with } \partial_{2,3} P \subset \mathring{\Sigma} \Big\}$$

$$\mathcal{D}_{1\Sigma}$$

$$\partial_1 \Sigma$$

$$\partial_1 \Sigma$$

$$\partial_2 P$$

$$\partial_1 \Sigma$$

$$\partial_1 \Sigma$$

$$\partial_2 P$$

$$\partial_1 \Sigma$$

 $\implies F_{g,n}$ uniquely determined by induction on 2g-2+n>0

I. How 2d topology arises from algebra — Partition function

• For higher order diff. op, we still get a recursion on 2g-2+n>0 but terms are now in bijection with $\left\{ \Sigma' \hookrightarrow \Sigma \text{ such that } \partial_1 \Sigma = \partial_1 \Sigma' \text{ and } \Sigma - \Sigma' \right\} / \operatorname{Diff}_{\Sigma}^{\partial}$

• The previous argument does not justify that $F_{g,n}[i,i_2,\ldots,i_n]$ is symmetric in $i\leftrightarrow i_k$.

This is a consequence of the ideal condition.

- In the quadratic case, this condition amounts to $[L_i,L_j]=\sum_a \hbar f_{i,j}^a L_a$
 - i.e. $(L_i)_i$ forms a Lie algebra represented by atmost quadratic diff. op $f^*_{**} \in \mathbb{C}$
 - \leadsto $f_{i,j}^k = B_{j,k}^i B_{i,k}^j$ and (overdetermined) quadratic relations for (A,B,C,D)

I. How 2d topology arises from algebra — Comments

The ideal condition is hard to realise: exhibiting Airy structures in not obvious!

The ones we know come from

- cut and paste relations in 2d geometry
- branched covers of complex curves (Eynard-Orantin theory)
- branched covers of compared conformal field theory (representation theory of VOAs)
 - Lie algebraic techniques (classification for semisimple Lie algebras Hadasz, Ruba (19))
- In many applications, the interpretation of g and n as genus and #boundaries of a surface is not artificial : $F_{g,n}$ "counts" such surfaces
 - maps (discretized surfaces), and so Feynman expansions of matrix integrals
 - branched covers
 - integrals over $\mathcal{M}_{g,n}$, $\mathcal{M}_{g,n}^{r\text{spin}}$, ...
 - Gromov-Witten invariants (integrals over $\mathcal{M}_{g,n}(X)$)
- Indirectly, applications to: knot theory, CFT, integrability, WKB expansions, etc.

П

Two examples: 2d TQFT, Virasoro constraints

II. Two examples — The 0th example

Take
$$V=\mathbb{C}$$

$$L=\hbar\partial_x-\left(\tfrac{1}{2}x^2+x\,\hbar\partial_x+\tfrac{\hbar^2}{2}\partial_x^2\right)-\hbar$$

Then
$$F_{g,n} = |\mathbb{G}_{g,n}| \in \mathbb{Z}[\frac{1}{2}]$$

is the number of terms resulting from the unfolding of the topological recursion, weighted by automorphisms (~counts pairs of pants decomposition up to diffeo.)

In fact, the equation $L \cdot e^F = 0$ can be explicitly solved

$$e^F = \exp\left(\frac{1}{\hbar}\left(x - \frac{x^2}{2}\right)\right) \operatorname{Bi}\left(\frac{1 - 2x - \hbar}{(2\hbar)^{2/3}}\right)$$

where
$$\operatorname{Bi}(y) = y^{-1/4} \exp\left(-\frac{2}{3}y^{3/2}\right) \left(1 + \sum_{m \ge 1} \frac{6^m \Gamma(m + \frac{1}{6}) \Gamma(m + \frac{5}{6})}{2\pi} \frac{y^{-3m/2}}{m!}\right)$$

solves the Airy differential equation $\partial_y^2 \mathrm{Bi}(y) = y \, \mathrm{Bi}(y)$

II. Two examples — 2d TQFT

Let $Bord_2$ be the monoidal category with

- objects : compact 1d smooth oriented manifolds
- morphisms : cobordisms
- monoidal structure : disjoint union

Let $\mathrm{Vect}_{\mathbb{C}}$ be the category of finite dim. vector spaces, monoidal structure \otimes

(Atiyah) A **2d TQFT** is a monoidal functor $\mathcal{F}: \mathrm{Bord}_2 \to \mathrm{Vect}_{\mathbb{C}}$

It gives - a vector space $\mathcal{F}(\mathbb{S}^1) = V$

- a product
$$\mathcal{F}\Big(igotimes_{}^{}\Big)=\mu\ :\ V^{\otimes 2} o V$$

- a pairing
$$\mathcal{F}\Big(\bigcirc \Big) = b \ : V^{\otimes 2} \to \mathbb{C} \qquad \text{symmetric and compatible :} \\ b\big(\mu(a_1 \otimes a_2) \otimes a_3 \big) = b\big(a_1 \otimes \mu(a_2 \otimes a_3) \big) = b\big($$

- a unit
$$\mathcal{F}igl(igctildright) = f 1 \ : \ \mathbb{C} o V$$

commutative and associative

$$b(\mu(a_1 \otimes a_2) \otimes a_3) = b(a_1 \otimes \mu(a_2 \otimes a_3))$$

Frobenius algebra

II. Two examples — 2d TQFT

A **2d TQFT** is a monoidal functor $\mathcal{F}: \mathrm{Bord}_2 \to \mathrm{Vect}_{\mathbb{C}}$ (Atiyah, 81)

Theorem (Abrams 96)

This a 1:1 correspondence between 2d TQFTs and Frobenius algebras

We can compute the TQFT functor from the Frobenius algebra using some pair of pants decomposition of the cobordism

$$\mathcal{F}\Big(\bigcup_{\mathsf{in}}^\mathsf{In} \mathsf{in} \Big) = \Big(\bigotimes_{\{c,c'\} \text{ glued}} b_{c,c'}^* \Big) \circ \Big(\bigotimes_{P = \text{ pair of pants}} \mu_P^* \Big) : V^{\otimes n} \to \mathbb{C}$$

where $\mu^* \in (V^*)^{\otimes 3}$ and $b^*: V^* \otimes V^* \to \mathbb{C}$

By the Frobenius algebra axioms, the result is independent of the pair of pants (hence matches the TQFT axioms)

II. Two examples — 2d TQFT

Lemma 2 (Andersen, B., Chekhov, Orantin 17)

Given a 2d TQFT, there is an Airy structure on $\mathcal{F}(\mathbb{S}^1)=V$

whose partition function generate $F_{g,n} = |\mathbb{G}_{g,n}| \cdot \mathcal{F}(\Sigma_{g,n \text{ in}})$

$$A:V^{\otimes 3}\to\mathbb{C}$$

 $B: V^{\otimes 2} \to V$ represents the product when using $V \overset{b}{\simeq} V^*$

 $C: V \to V^{\otimes 2}$

$$D = \mathcal{F}\left(\bigcirc \right) : V \to \mathbb{C}$$

Proved by comparison of TQFT rules with TR

The underlying Lie algebra is abelian because the product is symmetric

II. Two examples — Virasoro constraints

The interesting examples of Airy structures have infinite-dimensional $\ V$

Take
$$V=z\mathbb{C}[\![z^2]\!]$$
 with basis $e_k=\frac{z^{2k+1}}{2k+1}$, and define $e_k^*=\frac{(2k+1)\mathrm{d}z}{z^{2k+2}}$ $k\in\mathbb{N}$

Take
$$\theta = \sum_{s>-1} \theta_s z^{2s} (\mathrm{d}z)^{-1}$$

Introduce
$$\begin{cases} B_{j,k}^{i} = \\ C_{j,k}^{i} = \\ \end{cases}$$

Introduce
$$\begin{cases} A_{j,k}^{i} = \mathop{\mathrm{Res}}_{z=0} \left(e_{i} \cdot \mathrm{d}e_{j} \cdot \mathrm{d}e_{k} \cdot \theta \right) = \theta_{-1} \, \delta_{i,j,k,0} \\ B_{j,k}^{i} = \mathop{\mathrm{Res}}_{z=0} \left(e_{i} \cdot \mathrm{d}e_{j} \cdot e_{k}^{*} \cdot \theta \right) = \frac{2k+1}{(2i+1)(2j+1)} \, (2j+1) \, \theta_{k-i-j} \\ C_{j,k}^{i} = \mathop{\mathrm{Res}}_{z=0} \left(e_{i} \cdot e_{j}^{*} \cdot e_{k}^{*} \cdot \theta \right) = \frac{(2j+1)(2k+1)}{2i+1} \, \theta_{k+j+1-i} \\ D^{i} = \frac{\theta_{0}}{8} \delta_{i,0} + \frac{\theta_{-1}}{24} \delta_{i,1} \end{cases}$$

Lemma 3 (Kontsevich, Soibelman 17; Andersen, B., Chekhov, Orantin 17)

These (A,B,C,D) define a quadratic Airy structure based on a Lie algebra isomorphic to

$$\operatorname{span}_{\mathbb{C}}(\mathcal{L}_i)_{i \geq s^*} \quad \text{with} \quad [\mathcal{L}_i, \mathcal{L}_j] = (i - j)\mathcal{L}_{i+j} \quad \text{and} \quad s^* = \min\{s \mid \theta_s \neq 0\}$$

II. Two examples — Applications

Intersection theory on $\overline{\mathcal{M}}_{g,n}$

$$\mathcal{M}_{g,n} = egin{array}{ll} \mathsf{moduli} \ \mathsf{space} \ \mathsf{of} \ \mathsf{compact} \ \mathsf{Riemann} \ \mathsf{surfaces} \ \mathcal{C} \ \mathsf{of} \ \mathsf{genus} \ \mathsf{g} \ \mathsf{with} \ \mathsf{marked} \ \mathsf{points} \ \ p_1, \dots, p_n \end{array}$$

 \leadsto $\overline{\mathcal{M}}_{g,n}$ Deligne-Mumford compactification by allowing stable (nodal) curves

$$\psi_i = c_1(T_{p_i}^*\mathcal{C}) \in H^2(\overline{\mathcal{M}}_{g,n}; \mathbb{Q})$$

Witten's conjecture (Kontsevich + Dijkgraaf-Verlinde-Verlinde theorem, 91)

For
$$\theta = z^{-2} dz$$
 $F_{g,n}[k_1, \dots, k_n] = \left(\int_{\overline{\mathcal{M}}_{g,n}} \prod_{i=1}^n \psi_i^{k_i} \right) \prod_{i=1}^n (2k_i - 1)!!$

i.e. Virasoro constraints for ψ - class intersection

Wait until Part IV for a geometric explanation

II. Two examples — Applications

Weil-Petersson volumes

$$\mathcal{M}_{g,n}(L) = \begin{array}{c} \text{moduli space of bordered Riemann surfaces} \\ \text{of genus g with n boundaries of lengths } L \in \mathbb{R}^n_+ \end{array}$$

 μ_{WP} Weil-Petersson volume form

Mirzakhani's recursion (07)

For
$$\theta = \frac{2\pi}{z\sin(2\pi z)dz} = \sum_{s>-1} \zeta(2s+2)(2^{2s+3}-4)z^{2s}(dz)^{-1}$$

we have
$$\int_{\mathcal{M}_{g,n}(L)} \mathrm{d}\mu_{\mathrm{WP}} = \sum_{k_1, \dots, k_n \geq 0} F_{g,n}[k_1, \dots, k_n] \prod_{i=1}^n \frac{L_i^{2k_i}}{2k_i!}$$

Wait until Part IV for a geometric explanation (due to Mirzakhani)

II. Two examples — New Airy structures from old ones

Operations on Airy structures

• $U=\exp\left(\frac{\hbar}{2}\sum_{a,b}\phi_{a,b}\partial_{x_a}\partial_{x_b}\right)$ acts by conjugation on \mathcal{W}_V^\hbar This amounts to $x_i\to x_i+\sum_a\phi_{i,a}\,\hbar\partial_{x_a}$

This amounts to
$$x_i o x_i + \sum_a \phi_{i,a} \, \hbar \partial_{x_a}$$

hence preserves the notion of Airy structure

- ightharpoonup Lemma 3 still applies when $\mathrm{d} e_i^* o \mathrm{d} e_i^* + \sum_{a \geq 0} \phi_{i,a} \, \mathrm{d} e_a$
- Direct sums of Airy structures are Airy structures
 - Lemma 3 has a generalisation to $V = zV_0[\![z^2]\!]$ where V_0 is a Frobenius algebra (coupling of the Virasoro example with the 2d TQFT example)

II. Two examples — Abstract loop equations

Back to general θ . Let us define the involution $\sigma(z)=-z$ and the multidifferentials

$$\omega_{0,1}(z) = -\frac{1}{\theta}$$

$$\omega_{0,2}(z_1, z_2) = \frac{\mathrm{d}z_1 \mathrm{d}z_2}{(z_1 - z_2)^2} + \sum_{a,b \ge 0} \phi_{a,b} \, \mathrm{d}e_a(z_1) \mathrm{d}e_b(z_2)$$

$$\omega_{g,n}(z_1, \dots, z_n) = \sum_{k_1, \dots, k_n \ge 0} F_{g,n}[k_1, \dots, k_n] \prod_{i=1}^n e_{k_i}^*(z_i)$$

$$2g - 2 + n > 0$$

For any g, n

- $\omega_{g,n}(z,z_2,\ldots,z_n)+\omega_{g,n}(\sigma(z),z_2,\ldots,z_n)$ holomorphic at z=0 by definition
- $\begin{aligned} \bullet \quad & \omega_{g-1,n+1}(z,\sigma(z),z_2,\ldots,z_n) + \sum_{\substack{I \sqcup I' = \{z_2,\ldots,z_n\}\\ h+h' = g}} \omega_{h,1+|Z|}(z,I)\omega_{h',1+|I'|}(\sigma(z),I') \end{aligned} = O\left(z^{2s^*}(\mathrm{d}z)^2\right)$ equivalent to $\sum_{i \geq s^*} \frac{(\mathrm{d}z)^2}{z^{2i+1}} \, \mathcal{L}_i \cdot e^F = 0$
- → abstract loop equations (B., Eynard, Orantin 13)

II. Two examples — Abstract loop equations

More generally, there is a notion of abstract loop equations associated to the data of

- ${\cal S}$ smooth complex curve
- x,y meromorphic function on $\mathcal S$ such that $\mathrm dx$ has finitely many zeroes, that are simple and not zeroes of $\mathrm dy$
- $\omega_{0,2}$ symmetric bidifferential on \mathcal{S}^2 double pole with coef. 1 on the diagonal
- Frobenius algebra $V_0 = \bigoplus_{\mathrm{d}x(\alpha)=0} \mathbb{C}.e^{\alpha}$ orthonormal and $\mu(e^{\alpha}\otimes e^{\beta}) = \delta_{\alpha,\beta}e^{\alpha}$
- $\omega_{0,1} = y \mathrm{d}x$
- Locally near α : $x = x(\alpha) + z^2 \iff \text{local involution } \sigma_{\alpha}(z) = -z$

$$\forall g, n, \alpha$$

$$\omega_{g,n}(z, z_2, \dots, z_n) + \omega_{g,n}(\sigma_{\alpha}(z), z_2, \dots, z_n) = O(dz)$$

$$\omega_{g-1,n+1}(z, \sigma_{\alpha}(z), z_2, \dots, z_n) + \sum_{\substack{I \sqcup I' = \{z_2, \dots, z_n\}\\ h+h'=g}} \omega_{h,1+|I|}(z, I)\omega_{h',1+|I'|}(\sigma_{\alpha}(z), I') = O(y(z)(dz)^2)$$

II. Two examples — Abstract loop equations

$$\forall g, n, \alpha$$

$$\omega_{g,n}(z, z_2, \dots, z_n) + \omega_{g,n}(\sigma_{\alpha}(z), z_2, \dots, z_n) = O(dz)$$

$$\omega_{g-1,n+1}(z, \sigma_{\alpha}(z), z_2, \dots, z_n) + \sum_{\substack{I \cup I' = \{z_2, \dots, z_n\}\\ h+h' = g}} \omega_{h,1+|Z|}(z, I)\omega_{h',1+|I'|}(\sigma_{\alpha}(z), I') = O(y(z)(dz)^2)$$

• Their set of solutions can be completely described (B., Shadrin, 15)

• There is a unique solution such that

$$\omega_{g,n}(z_1,\ldots,z_n) = \sum_{\alpha} \operatorname{Res}_{z=\alpha} \left(\int_{\alpha}^{z} \omega_{0,2}(\cdot,z_1) \right) \omega_{g,n}(z,z_2,\ldots,z_n)$$

and it encodes the partition function of an Airy structure on $V=zV_0\llbracket z^2
rbracket$

In particular this justifies existence and symmetry of the solution

II. Two examples — Comments

 The ideal (here Lie) condition can be checked by direct computation but this looks ad hoc!

There are two conceptual ways to find this Airy structure

- it can be obtained from free field representation of the Virasoro algebra at c=1
- historically, Eynard-Orantin theory preexisted

• Other (higher order) Airy structures can be found from the free field rep. VOAs

```
W(\mathfrak{gl}_r) (Milanov 16 ; B., Bouchard, Chidambaram, Creutzig, Noshchenko 18 ; B., Kramer, Schüler 20)
```

correspond to higher zeroes of $\mathrm{d}x$ and $\mathcal S$ possibly singular

```
super-Virasoro (Bouchard, Ciosmak, Hadasz, Osuga, Ruba, Sulkowski 19) correspond to S = \text{super-Riemann surface}
```

Ш

Topological expansions in hermitian matrix models

Consider the probability measure on the space of hermitian matrices $\ M$ of size $\ N$

$$\mathrm{d}\mu(M) = \frac{\mathrm{d}M}{Z_N} e^{N \operatorname{Tr} V(M)}$$
 $V:$ polynomial going to $-\infty$ at infinity

Define the correlators
$$W_n(x_1, \dots, x_n) = \operatorname{Cumulant}_{\mu} \left(\operatorname{Tr} \frac{1}{x_1 - M}, \dots, \operatorname{Tr} \frac{1}{x_n - M} \right)$$

By integration by parts, one can prove $\mu \left[\left(\operatorname{Tr} \frac{1}{x-M} \right)^2 - \operatorname{Tr} \frac{N \, V'(M)}{x-M} \right] = 0$

or equivalently
$$W_2(x,x) + W_1(x)^2 - NV'(x)W_1(x) = -N[V'(x)W_1(x)]_+$$

Likewise, for each $n \ge 1$ there is a quadratic functional relation for W_{n+1}, \ldots, W_1

→ Schwinger-Dyson equations

III Topological expansions in matrix models — Large N expansion

(Mhaskar, Saff, Totik, Anderson-Guionnet-Zeitouni ...)

• As $N \to \infty$, the (random) spectral measure of M converges to some deterministic λ (almost surely and in expectation)

$$W_{0,1}(x) = \lim_{N \to \infty} \mu \left[\frac{1}{N} \operatorname{Tr} \frac{1}{x - M} \right] = \int \frac{\mathrm{d}\lambda(\xi)}{x - \xi}$$
 exists, holomorphic in $x \in \mathbb{C} \setminus \operatorname{supp} \lambda$

(Tutte 60s, Brezin-Itzykson-Parisi-Zuber 81, ...)

- we have a spectral curve $S: P(x,y) = y^2 V'(x)y + \operatorname{Pol}(x) = 0$ on which $W_{0,1}(x)$ continues analytically to a meromorphic function
- Exploiting the Schwinger-Dyson equations and large deviation theory one can prove the existence of an asymptotic expansion $W_n \sim \sum_{g \geq 0} N^{2-2g-n} W_{g,n}$ when $\sup \lambda = [a,b]$ (t'Hooft 74, BIPZ 81, Pastur-Shcherbina 01, B. Guionnet 11)
- Then, $\omega_{g,n}(x_1,\ldots,x_n) = \left(W_{g,n}(x_1,\ldots,x_n) + \frac{\delta_{g,0}\delta_{n,2}}{(x_1-x_2)^2}\right)\prod_{i=1}^n \mathrm{d}x_i$ continues analytically to a meromorphic multidifferential on \mathcal{S}^n (Eynard 04) with poles at $\mathrm{d}x_i = 0$ only (for 2g-2+n>0)

III Topological expansions in matrix models — Large N expansion

• Inserting $W_n \sim \sum_{g \geq 0} N^{2-2g-n} \, W_{g,n}$ in the Schwinger-Dyson equations

and using analytic continuation implies abstract loop equations for $(\omega_{g,n})_{g,n}$ (B., Eynard, Orantin 13)

Schwinger-Dyson equations themselves

(information near $x_i = \infty$, degree 1 condition fails)

are not Airy structure constraints/abstract loop equations

(information near dx = 0)

• The assumption $\sup \lambda = [a,b]$ implies $\mathcal{S} \simeq \mathbb{P}^1$ hence automatically $\omega_{g,n}(z_1,\ldots,z_n) = \sum_{\alpha} \mathop{\mathrm{Res}}_{z=\alpha} \left(\int_{\alpha}^z \omega_{0,2}(\cdot,z_1) \right) \omega_{g,n}(z,z_2,\ldots,z_n)$ (Cauchy formula)

$$\mathcal{S} = \begin{array}{c} a & b \\ \hline a & b \end{array}$$

 $\Longrightarrow \omega_{g,n}$ computed by topological recursion (Eynard 05)

III Topological expansions in matrix models — Generalisations

The same strategy applies to many other random hermitian matrix models

$$d\mu(M) = \frac{dM}{Z_N} \exp\left(\sum_{\substack{p \ge 1\\ m_1, \dots, m_p > 1}} N^{2-p} t_{m_1, \dots, m_p}^{(p)} \prod_{l=1}^p \text{Tr } M^{m_l}\right)$$

- existence of asymptotic expansions $W_n \sim \sum_{g \geq 0} N^{2-2g-n} \, W_{g,n}$ (B., Guionnet, Kozlowski, 15)
- SD implies abstract loop equations (B., Eynard, Orantin 13, B. 14)
- If $t^{(p)}=0$ for all $p\geq 3$, the projection property holds and we have TR

Otherwise, it does not and other solutions appear: **blobbed TR** (B. Shadrin 15)

Blobbed TR appears in random colored tensor models (Eynard, Dartois, Bonzom, ...)
 and random spectral triples models (Azarfar's thesis, ...)

V

From geometric to topological recursion

IV From geometric to topological recursion — General setting

We would like to lift TR to a natural construction associated to surfaces

Let Surf be the category with

- objects : compact smooth oriented stable surfaces with labeled boundaries
- morphisms : isotopy classes of orientation- and label-preserving diffeo.

Let V be a category of topological vector spaces

Assume we have a functor $E: \operatorname{Surf} \to \mathcal{V}$

An E-valued functorial assignment is the data of $\Omega_{\Sigma} \in E(\Sigma)$ for all objects Σ

such that, for any $f:\Sigma\to\Sigma'$ we have $E(f)(\Omega_\Sigma)=\Omega_{\Sigma'}$

In particular Ω_{Σ} is $\operatorname{Mod}_{\Sigma}^{\partial} := \operatorname{Diff}_{\Sigma}^{\partial}/(\operatorname{Diff}_{\Sigma}^{\partial})_{0}$ -invariant

Geometric recursion constructs such functorial assignments by induction on $-\chi_{\Sigma}$ (Andersen, B., Orantin, 17)

IV From geometric to topological recursion — Teichmüller setting

Teichmüller space

$$\mathcal{T}_{\Sigma} = \left\{ \begin{array}{l} \text{hyperbolic metrics on } \Sigma \\ \text{such that } \partial \Sigma \text{ is geodesic} \end{array} \right\} \bigg/ (\mathrm{Diff}_{\Sigma}^{\partial})_{0}$$

$$\mathcal{M}_{\Sigma} = \mathcal{T}_{\Sigma}/\mathrm{Mod}_{\Sigma}^{\partial}$$

- $E(\Sigma) = \mathcal{C}^0(\mathcal{T}_{\Sigma})$ with topology of convergence on all compacts
 - → E-valued functorial assignments give continuous functions on the moduli space
- Let us look at

$$\mathcal{P}_{\Sigma} = \left(\bigcup_{m=2}^{n} \mathcal{P}_{\Sigma}^{m}\right) \cup \mathcal{P}_{\Sigma}^{\emptyset}$$

$$\mathcal{P}_{\Sigma}^{\emptyset} = \left\{ \begin{array}{ll} \text{homotopy class of } P \hookrightarrow \Sigma \\ \text{such that } \Sigma - P \text{ stable} \end{array} \right. \left. \begin{array}{ll} \partial_1 P = \partial_1 \Sigma \\ \partial_2 P = \partial_m \Sigma \end{array} \right\}$$

$$\mathcal{P}_{\Sigma}^{m} = \left\{ \begin{array}{ll} \text{homotopy class of} \ P \hookrightarrow \Sigma \\ \text{such that} \ \Sigma - P \ \text{stable} \end{array} \right. \left. \begin{array}{ll} \partial_{1}P = \partial_{1}\Sigma \\ \partial_{2,3}P \subset \mathring{\Sigma} \end{array} \right\}$$

Its orbit set $\overline{\mathcal{P}}_{\Sigma} = \mathcal{P}_{\Sigma}/\mathrm{Mod}_{\Sigma}^{\partial}$ is finite and corresponds to the terms in TR

IV From geometric to topological recursion — Teichmüller setting

 $P=\mathsf{pair}\ \mathsf{of}\ \mathsf{pants}\ \mathsf{and}\ \mathsf{note}\ \mathsf{that}\ \mathcal{T}_P\cong\mathbb{R}^3_+$ (boundary lengths)

T =torus with 1 boundary

Initial data

$$A, B, C \in \mathcal{C}^0(\mathbb{R}^3_+)$$
 $D \in \mathcal{C}^0(\mathcal{T}_T)^{\mathrm{SL}_2(\mathbb{Z})}$

$$D \in \mathcal{C}^0(\mathcal{T}_T)^{\mathrm{SL}_2(\mathbb{Z})}$$

with A, C symmetric in their last 2 variables

GR construction

$$\chi = -1$$

$$\Omega_P = A(\vec{\ell}(\partial P))$$
 and $\Omega_T = D$

Disconnected

$$\Omega_{\Sigma_1 \sqcup \cdots \sqcup \Sigma_k}(\sigma_1, \ldots, \sigma_k) = \prod_{i=1}^{\kappa} \Omega_{\Sigma_i}(\sigma_i)$$

$$\chi \le -2$$

$$\Omega_{\Sigma}(\sigma) = \sum_{m=2}^{n} \sum_{[P] \in \mathcal{P}_{\Sigma}^{m}} B(\vec{\ell}_{\sigma}(\partial P)) \Omega_{\Sigma - P}(\sigma|_{\Sigma - P}) + \frac{1}{2} \sum_{[P] \in \mathcal{P}_{\Sigma}^{\emptyset}} C(\vec{\ell}_{\sigma}(\partial P)) \Omega_{\Sigma - P}(\sigma|_{\Sigma - P})$$

by induction

 \rightsquigarrow countably many terms, permuted by $\mathrm{Mod}_{\Sigma}^{\partial}$

IV From geometric to topological recursion — Teichmüller setting

$$\chi = -1 \qquad \qquad \Omega_P = A\big(\vec{\ell}(\partial P)\big) \quad \text{and} \quad \Omega_T = D$$

$$Disconnected \qquad \Omega_{\Sigma_1 \sqcup \cdots \sqcup \Sigma_k}(\sigma_1, \ldots, \sigma_k) = \prod_{i=1}^k \Omega_{\Sigma_i}(\sigma_i)$$

$$\chi \leq -2 \qquad \qquad \Omega_{\Sigma}(\sigma) = \sum_{m=2}^n \sum_{[P] \in \mathcal{P}_{\Sigma}^m} B\big(\vec{\ell}_{\sigma}(\partial P)\big) \Omega_{\Sigma - P}(\sigma|_{\Sigma - P}) + \frac{1}{2} \sum_{[P] \in \mathcal{P}_{\Sigma}^{\emptyset}} C\big(\vec{\ell}_{\sigma}(\partial P)\big) \Omega_{\Sigma - P}(\sigma|_{\Sigma - P})$$
 by induction

Theorem 4 (Andersen, B., Orantin, 17)

If A,B,C,D satisfy some decay conditions, then

- Ω_{Σ} is a well-defined functorial assignment (absolute convergence)
- $V\Omega_{g,n}(L) = \int_{\mathcal{M}_{g,n}(L)} \Omega_{\Sigma_{g,n}} \mathrm{d}\mu_{\mathrm{WP}}$ is a well-defined continuous function of $L \in \mathbb{R}^n_+$

and it safisfies topological recursion in the form :

$$V\Omega_{g,n}(L_{1},...,L_{n}) = \sum_{m=2}^{n} \int_{\mathbb{R}_{+}} d\ell \, \ell \, B(L_{1},L_{m},\ell) \, V\Omega_{g,n-1}(\ell,L_{2},...,\widehat{L_{m}},...,L_{n})$$

$$+ \frac{1}{2} \int_{\mathbb{R}_{+}^{2}} d\ell \, d\ell' \, \ell \ell' \, C(L_{1},\ell,\ell') \bigg(V\Omega_{g-1,n+1}(\ell,\ell',L_{2},...,L_{n}) + \sum_{\substack{I \sqcup I' = \{L_{2},...,L_{n}\}\\h+h'=g}} V\Omega_{h,1+|I|}(\ell,I) \, V\Omega_{h',1+|I'|}(\ell',I') \bigg)$$

with base cases $V\Omega_{0,3}(L_1,L_2,L_3) = A(L_1,L_2,L_3)$ and $V\Omega_{1,1}(L) = \int_{\mathcal{M}_{1,1}(L)} D \, \mathrm{d}\mu_{\mathrm{WP}}$

IV From geometric to topological recursion — Examples

$$\text{Take} \quad \begin{cases} A_{\mathrm{M}}(L_{1},L_{2},L_{3}) = 1 \\ B_{\mathrm{M}}(L_{1},L_{2},\ell) = \frac{1}{2L_{1}} \big(F(L_{1}+L_{2}-\ell) + F(L_{1}-L_{2}-\ell) - F(-L_{1}+L_{2}-\ell) - F(-L_{1}-L_{2}-\ell) \big) \\ C_{\mathrm{M}}(L_{1},\ell,\ell') = \frac{1}{L_{1}} \big(F(L_{1}-\ell-\ell') - F(-L_{1}-\ell-\ell') \big) & \text{with } F(x) = 2 \ln(1+e^{x/2}) \\ D_{\mathrm{M},T}(\sigma) = \sum_{\substack{\gamma = \text{simple} \\ \text{closed curve}}} C_{\mathrm{M}} \big(\ell_{\sigma}(\partial T), \ell_{\sigma}(\gamma), \ell_{\sigma}(\gamma) \big) \end{cases}$$

Theorem 4 (Mirzakhani, 07)

 $\Omega_{\Sigma}(\sigma)=1$ for any Σ and $\sigma\in\mathcal{T}_{\Sigma}$

As a consequence, $\int_{\mathcal{M}_{a,n}(L)} d\mu_{WP}$ satisfies the topological recursion

In fact, the integral operators with kernels B and C preserve the space of even polynomials

$$A(L_1,L_2,L_3) = \sum_{i,j,k\geq 0} A^i_{j,k}\,e_i(L_1)e_j(L_2)e_k(L_3) \qquad \text{with the basis} \quad e_i(L) = \frac{L^{2i}}{(2i)!}$$

$$\int_{\mathbb{R}_+} \mathrm{d}\ell\,\ell\,B(L_1,L_2,\ell)\,e_k(\ell) = \sum_{i,j\geq 0} B^i_{j,k}\,e_i(L_1)e_j(L_2) \qquad \text{yields the Airy structure we've}$$

$$\int_{\mathbb{R}_+^2} \mathrm{d}\ell\mathrm{d}\ell'\,\ell\ell'\,C(L_1,\ell,\ell')\,e_j(\ell)e_k(\ell') = \sum_{i\geq 0} C^i_{j,k}\,e_i(L_1)$$

$$V\Omega_{1,1}(L) = \sum_{i\geq 0} D^i\,e_i(L)$$

with the basis
$$e_i(L) = \frac{L^{2i}}{(2i)!}$$

yields the Airy structure we've seen before ...

IV From geometric to topological recursion — Examples

The same thing can be carried on the combinatorial Teichmüller space

$$\mathcal{T}_{\Sigma}^{\text{comb}} = \left\{ \begin{aligned} &\text{isotopy class of proper embeddings of metric ribbon graphs} \\ &\mathbb{G} \xrightarrow{f} \Sigma \end{aligned} \right. \text{ such that } \Sigma \text{ retracts onto } f(\mathbb{G}) \text{ and labels agree} \right\}$$

In his proof of Witten's conjecture, Kontsevich constructed a volume form $\mathrm{d}\mu_{\mathrm{K}}$ on the combinatorial Teichmüller space $\mathcal{M}_{\Sigma}^{\mathrm{comb}} = \frac{\mathcal{T}_{\Sigma}^{\mathrm{comb}}}{\mathrm{Mod}_{\Sigma}^{\partial}} = \bigcup_{\substack{G \text{ ribbon graph type } (g,n)}} \frac{\mathbb{R}_{+}^{E(G)}}{\mathrm{Aut}\ G}$ so that $\int_{\mathcal{M}_{g,n}^{\mathrm{comb}}(L)} \mathrm{d}\mu_{\mathrm{K}} = \int_{\overline{\mathcal{M}}_{g,n}} \exp\left(\frac{1}{2}\sum_{i=1}^{n}L_{i}^{2}\psi_{i}\right)$

and used matrix model techniques to conclude

There is an analogue of Mirzakhani's theorem in the combinatorial case Its integration produces the Virasoro constraint/Airy structure for ψ -intersections \leadsto geometric proof of Witten's conjecture

(Andersen, B., Charbonnier, Giacchetto, Lewanski, Wheeler, to appear)

Thank you for your attention!

