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How 2d topology arises from algebra




l. How 2d topology arises from algebra — Airy structures

Let V' be a vector space over C

Choose a basis of linear coordinates (z;)icr

The Weyl algebra is the graded algebra of differential operators on V
WE = Clh|(x;, hdy, i € I) degz; = deghdx; =1  degh =2

An Airy structure is a linearmap L : V — Wi+ such that

deg 1 condition: L; = ho,, + O(2)
ideal condition: [L(V),L(V)] C AW{ - L(V)
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l. How 2d topology arises from algebra — Airy structures

An Airy structure is a linearmap L : V — W} such that

deg 1 condition: L; = ho,, + O(2) (uniqueness)
ideal condition: [L(V),L(V)] c AW - L(V)  (existence)

Theorem 1 (Kontsevich, Soibelman 17)

R9—1
|

There exists a unique F = Z
n!

g=>0
n>1

F, ., with F,, € Sym"V™ such that

\) Lz . 6F =0 and F(),l = O,FO,Q =0

e’ s called the partition function



l. How 2d topology arises from algebra — Partition function

Assume L; has max. degree 2

L; = ho,, — Z (%Aﬁ%bxaxb + Bé’bxahé’xb + %Cé’b#a%@xb) — D"
a,b

and decompose Fg,n— g anh,--- In] Tiy + - T

n

Let's compute e ' L; - e’ =0

[how] }703[Z jak] ]k_

2
- 1] Fy1[i] — D' =0
[hg wzz f)%'n] Fg,n[i,ig,... (ZZBZ gn 1&?,2,...,7;/77:,...,2.71]
a m=2
20—2+n2>2

‘|‘%Zcé,b(Fg_l,n—{—l[a)bazéa'"77:71]_|_ Z Fh,1+|J|[a’7[] Fh’,1—|—|J’|[bJI,])> =0

a,,b I|_II/:{7,2 ..... ’Ln}
h+h'=g



. How 2d topology arises from algebra — Partition function

. ; —~ .
Fynlt,ig, ...yt (g g Bi o Fygn-1la,ia, ... im,. .., 0p]

a m=2

+%Zc@b(Fg_l,nH[a,b,z‘a,.--,z‘n]+ )3 FMWI[&’”Fh”“"f"[b’ll])):

a,b IuI/:{'LQ ..... Zn}
h+h'=g

Take ¥ smooth oriented surface, genus g, n labeled boundaries

P pair of pants with labeled boundaries

The terms in the bracket are in bijection with

Ps = {p%g such that ;P =0, and ¥ — P stable}/ Diﬂg

_ WQ2{ ,..w/ith 82P=(9m2} U { ... With (?2,31[1C203\}

o terms C terms

— I}, uniguely determined by inductionon 2g—2+4+mn >0




l. How 2d topology arises from algebra — Partition function

e For higher order diff. op, we still get a recursion on 2g —2+n >0
but terms are now in bijection with { > < 2 suchthat X =Y and ¥ — Y }/ Diff%

e The previous argument does not justify that Fy,|7,%2,...,%,] is symmetric in i < i

This is a consequence of the ideal condition.

 In the quadratic case, this condition amounts to  [Li, L] Z hfi;

i.e. (L;); forms a Lie algebra represented by atmost quadra’uc diff. op fI, €C

~ ffj = B;k — Bfk and (overdetermined) quadratic relations for (A, B,C, D)



l. How 2d topology arises from algebra — Comments

e The ideal condition is hard to realise : exhibiting Airy structures in not obvious !

The ones we know come from

- cut and paste relations in 2d geometry

- branched covers of complex curves (Eynard-Orantin theory)
C - conformal field theory (representation theory of VOAs)

- Lie algebraic techniques (classification for semisimple Lie algebras Hadasz, Ruba (19))
e In many applications, the interpretation of g and n as genus and #boundaries
of a surface is not artificial : F} ,, “counts” such surfaces

- maps (discretized surfaces), and so Feynman expansions of matrix integrals

- branched covers
- integrals over Mg, , M2, ...

- Gromov-Witten invariants (integrals over M, ,,(X))

o Indirectly, applications to : knot theory, CFT, integrability, WKB expansions, etc.



Two examples : 2d TQFT, Virasoro constraints



Il. Two examples — The Oth example

Take V =C
L=hd, — (32% + 2 hd, + £0%) —h

Then F,, =Gy, € Z[5]

is the number of terms resulting from the unfolding
of the topological recursion, weighted by automorphisms

(~counts pairs of pants decomposition up to diffeo.)

In fact, the equation L -e” =0 can be explicitly solved

eF = exp (Lo — %) )Bi(L20)

6™ (m + +)['(m + 2) y—3m/2
N o —1/4 _2.3/2 6 6
where Bi(y) =y exp (- 3y )<1+§1 o m! )

solves the Airy differential equation 8;Bi(y) = y Bi(y)



Il. Two examples — 2d TQFT

Let Bord,; be the monoidal category with

- objects : compact 1d smooth oriented manifolds

- morphisms : cobordisms

- monoidal structure : disjoint union

Let Vectc be the category of finite dim. vector spaces, monoidal structure ®
A 2d TQFT is a monoidal functor F : Bordy, — Vecte (Atiyah)

It gives - a vector space ]—“(81) —V

- a product ]—‘( @

) . V®2 51V commutative and associative
- a pairing ]—“(@) _p : V®2 5 C  symmetric and compatible :

|
=

b(p(ar ® az) ® as) = b(a1 @ plag ® ag))

- a unit ]'"(CD =1 : C =V

~+ Frobenius algebra



Il. Two examples — 2d TQFT

A 2d TQFT is a monoidal functor F : Bordy, — Vectc (Atiyah, 81)

Theorem (Abrams 96)

This a 1:1 correspondence between 2d TQFTs and Frobenius algebras

We can compute the TQFT functor from the Frobenius algebra
using some pair of pants decomposition of the cobordism

in N

() (8 0, 8 ) e
in in {c,c’} glued P=pair of pants

where p©* € (V*)®3 and 0"V V* = C

By the Frobenius algebra axioms, the result is independent of the pair of pants
(hence matches the TQFT axioms)



Il. Two examples — 2d TQFT

Lemma 2 (Andersen, B., Chekhov, Orantin 17)

Given a 2d TQFT, there is an Airy structure on ]-“(Sl) —V

whose partition function generate Fy.n = |Gg.n| - F(Xgn in)

A VS 5 C b
B:V® sV represents the product when using V ~V™*
C:V Ve

sz():V—HC

Proved by comparison of TQFT rules with TR

The underlying Lie algebra is abelian because the product is symmetric



Il. Two examples — Virasoro constraints

The interesting examples of Airy structures have infinite-dimensional V
Z2h 1 , (2k + 1)dz

*

Take V = 2C[z*] with basis ex = ST and define e} = T keN

Take 0 = Zé’ z%%(dz) ™!

s>—1

( Aé)k = Res (ez de; - dey, - (9) =0_19; k0

z=0
' 2k 1 .
Introduce ik = RS (i -dej - ef. - 0) = Gty (20 +1) Or—i—j
z 2j+1)(2k+1
jok = Res (ei- €} -ef-0) = (2] 2z')J(r1 ) s i1

\ D' = %60+ G

Lemma 3 (Kontsevich, Soibelman 17 : Andersen, B., Chekhov, Orantin 17 )

These (A,B,C,D) define a quadratic Airy structure based on a Lie algebra isomorphic to

spang(L;)i>s+ with [£;, L] = (1 — 7)Li+; and s* = min{s | 6, # 0}



Il. Two examples — Applications

Intersection theory on M, ,

M. = moduli space of compact Riemann surfaces C
ar of genus g with marked points p1,...,Pn

~ /\/lg,n Deligne-Mumford compactification by allowing stable (nodal) curves

WV, = 1 <T;ZC) S H2<Mg,n; @)

Witten's conjecture (Kontsevich + Dijkgraaf-Verlinde-Verlinde theorem, 91)

For 9= :>"24» Fg,n[kl,...,kn] = (/ Hw5>
M .

g,m =1 1

(2k; — 1)

n
=1

i.e. Virasoro constraints for 1)- class intersection

Wait until Part IV for a geometric explanation



Il. Two examples — Applications

Weil-Petersson volumes

M (L) _ moduli space of bordered Riemann surfaces
g,n ~ of genus g with n boundaries of lengths L & R’

HWP Weil-Petersson volume form

Mirzakhani's recursion (07)

2T
9 — _ 2 2 228—|—3 L 4 2s d —1
For zsin(2mz)dz 8;1C< s+2)( )z7(d2)
wehave [ dmw = Y ki k) [ 5
Mg,n (L) Kty ki >0 i=1

Wait until Part IV for a geometric explanation (due to Mirzakhani)



Il. Two examples — New Airy structures from old ones

Operations on Airy structures

o U=exp(L Z Ga,v0z,0z,) acts by conjugation on Wi
a,b

This amounts to *; — x; + Z Gi,aq N0,
a

hence preserves the notion of Airy structure

~>  Lemma 3 still applies when  de; — de; + Z bi.q deg
a>0

e Direct sums of Airy structures are Airy structures

~ Lemma 3 has a generalisation to V' = 2V;[2?]

where Vj is a Frobenius algebra

(coupling of the Virasoro example with the 2d TQFT example)



ll. Two examples — Abstract loop equations

Back to general #. Let us define the involution o(2) = —2z and the multidifferentials
1
WQ,l(Z) = —5
ledZQ
wo2(2z1,22) = + apbdeg(z1)dey(z
0,2( 1 2) (Zl _22)2 a%0¢ ,b ( 1) b( 2)
wWon (21, )= Y Fyulkr,... kil ][] €, (21) 29—2+n>0
k1,....kn,>0 i=1

Forany g, n

o Wyn(z,22,...,2n) +wyn(0(2),22,...,2,) holomorphicat z=0

by definition
o Wog—1nt+1(2,0(2),22,...,2n) + Z wh 14|z (2 Dwp 14101 (0(2), 1) = O(ZZS* (dZ)Q)

- (dz)? F
equivalentto Y et Lice =0

1>8*

~ abstract loop equations (B., Eynard, Orantin 13)



ll. Two examples — Abstract loop equations

More generally, there is a notion of abstract loop equations associated to the data of

S smooth complex curve

2,1y meromorphic function on S such that

dz has finitely many zeroes, that are simple and not zeroes of dy

wo,2  symmetric bidifferential on S double pole with coef. 1 on the diagonal

o Frobenius algebra V1, = @ C.e® orthonormal and p(e® ® e”) = 6, pe”

dz(a)=0
e Wo,1 = ydCE
¢ Loc:ally near o . T = :E(Oz) + 22~ local involution Ua(z) — —Z
vg,n,a
Wy n (2,22, .., 2n) + Wen(0a(2),22,...,2n) = O(dz)

Wyg—1.n+1(2,00(2), 22, ..., 2n) + Z Wh,1—|—|I|(Z> I)wh',1+|1/|(0a(z)a—7/) = O(y(z)(dz)Q)



ll. Two examples — Abstract loop equations

Vg, n, o
Wy n(2,22,...,2n) FWen(0a(?),22,...,2n) = O(dz)

wg—l,n+1(zaaa(z)7z27°"7Zn> + § wh,1—|—|Z|(Z7I>wh’,1+|f’|(aa(z)7ll> — O(y(’Z)(dZ)Q)
Tul'={za,...,2n }
h+h'=g

e Their set of solutions can be completely described (B., Shadrin, 15)

e There is a unique solution such that

W21, .-, E Beas(/ wo.2(: zl)>wg,n(z,z2,...,zn)

and it encodes the partition function of an Airy structure on V = 2V[27]

In particular this justifies existence and symmetry of the solution



Il. Two examples — Comments

e The ideal (here Lie) condition can be checked by direct computation

but this looks ad hoc !

There are two conceptual ways to find this Airy structure

- it can be obtained from free field representation of the Virasoro algebra at c = 1

- historically, Eynard-Orantin theory preexisted

o Other (higher order) Airy structures can be found from the free field rep. VOAs

Wigl.) (Milanov 16 ; B., Bouchard, Chidambaram, Creutzig, Noshchenko 18 ;
B., Kramer, Schuler 20)

correspond to higher zeroes of dz and S possibly singular

super-Virasoro  (Bouchard, Ciosmak, Hadasz, Osuga, Ruba, Sulkowski 19)

correspond to S = super-Riemann surface



Topological expansions in hermitian matrix models



lll Topological expansions in matrix models — Schwinger-Dyson equations

Consider the probability measure on the space of hermitian matrices M of size N

dM : : e
du(M) = Z—eNTrV(M) V' : polynomial going to —o0 at infinity
N
Define th ators W, ( ) = Cumulant,, ( Tr —— Ty
efine the correlators n(x1,...,2,) = Cumulan r ..o, T
: M\ - M Ty — M
By integration by parts, one can prove M{(Tr 1) Ty Nxv_—g\y)] =0

or equivalently  Wa(z,z) + Wi(z)? = NV'(2)Wy(z) = =N [V'(z)W1(z))]+

Likewise, for each n > 1 there is a quadratic functional relation for W,,41,..., W

~ Schwinger-Dyson equations



lll Topological expansions in matrix models — Large N expansion

(Mhaskar, Saff, Totik, Anderson-Guionnet-Zeitouni ...)

e As N — oo, the (random) spectral measure of M converges to
some deterministic A (almost surely and in expectation)

dA
~ - Woa(z) = ]\}Enooﬂ[% Tr w_lM} — / » _(fg exists, holomorphic in z € C\ supp A

(Tutte 60s, Brezin-ltzykson-Parisi-Zuber 81, ...)
~  we have a spectral curve S : P(z,y) =y° — V'(z)y + Pol(z) = 0

on which Wy 1(z) continues analytically to a meromorphic function

e Exploiting the Schwinger-Dyson equations and large deviation theory

one Can prove tl e existence Of an asymptotic expansion W,, ~ N?2729=n 1y n
9,
g>0

when supp A = |a,b] (t'Hooft 74, BIPZ 81, Pastur-Shcherbina 01, B. Guionnet 11)

04.00n -
® Then, wg,n(xla-naxn):(Wg,n<x17---7~rn)+ 9.0 ’QQ)dei

continues analytically to a meromorphic multidifferential on ™  (Eynard 04)

with poles at dz; =0 only (for 29 —2+n > 0)



lll Topological expansions in matrix models — Large N expansion

* Inserting W, ~» N?>"?""W,, inthe Schwinger-Dyson equations
920

and using analytic continuation implies abstract loop equations for (wWg,n)g,n

(B., Eynard, Orantin 13)

Schwinger-Dyson equations themselves

(information near x; = 0o, degree 1 condition fails)

are not Airy structure constraints/abstract loop equations

(information near dz =0)

e The assumption supp A = [a, b] implies S ~ P!

hence automa’ucally Wgn (21, ZBGQS (/ wo.2(- 21))wg,n(z,z2,...,zn) (Cauchy formula)
a b
— — Wy, cOMputed
S = l X ; a b

by topological recursion

a (Eynard 05)



lll Topological expansions in matrix models — Generalisations

The same strategy applies to many other random hermitian matrix models

dM -
du(M) = I exp ( Z N27P tggz,...,mp HTr Mml)
=1

p=>1
ml,...,mp21

e existence of asymptotic expansions W, ~» N*"?""W,, (B, Guionnet, Kozlowski, 15)
9=0

e SD implies abstract loop equations  (B., Eynard, Orantin 13, B. 14)

e If t?) =0 forall p>3,the projection property holds and we have TR

Otherwise, it does not and other solutions appear : blobbed TR (B. Shadrin 15)

e Blobbed TR appears in random colored tensor models (Eynard, Dartois, Bonzom, ...)
and random spectral triples models (Azarfar's thesis, ...)



Vv

From geometric to topological recursion




IV From geometric to topological recursion — General setting

We would like to lift TR to a natural construction associated to surfaces

Let Surf be the category with

- objects : compact smooth oriented stable surfaces with labeled boundaries

- morphisms : isotopy classes of orientation- and label-preserving diffeo.

Let V be a category of topological vector spaces

Assume we have a functor E : Surf — V

An E-valued functorial assignment is the data of Qx € E(X) for all objects X

such that, forany f : ¥ — X' we have E(f)(Qx) = Qs

In particular {1x is Mod? := Diff% /(Diff) -invariant

Geometric recursion constructs such functorial assignments by induction on —xx

(Andersen, B., Orantin, 17)



IV From geometric to topological recursion — Teichmiiller setting

Teichmuller space Moduli space
Ty = { hyperbolic metrics on 3 }/ . 1O _ Mod?
such that 90X is geodesic (Diff5)o Mz = Tz/Mody;

E>) = cY (Tx) with topology of convergence on all compacts

~+ E-valued functorial assignments give continuous functions on the moduli space

Let us look at [ homotopy class of P < %

L such that > — P stable

Py = P ) UPL r
> ( U > ) > m homotopy class of P < X

m=2
L such that ¥ — P stable

&P_&Z}
O P = 0,2
mpzmz}
82,3P C i

lts orbit set Py = Ps;/Mod$: is finite and corresponds to the terms in TR



IV From geometric to topological recursion — Teichmiiller setting

pair of pants and note that 7p = R% (boundary lengths)

P =
T = torus with 1 boundary

Initial data A,B,C € C°(R%) D e CO(T7)5k@)

with A, C' symmetric in their last 2 variables

GR construction

x = —1 Qp = A(L(OP)) and Qr=D
k
Disconnected Qs,u-um, (01,5 08) = [ [ 5, (04)
i=1
X S —2 Y Y B 8P QE p(0'|2 p % 8P)) Qz_p(O"Z_p)
m=2 [P|ePZ
by induction - Flers

~ countably many terms, permuted by Mod%

orx




IV From geometric to topological recursion — Teichmiiller setting

x=—1 Qp:A( (@P)) and Qr =D
Disconnected Qs 000sy (015, 0k) = HQ& CH

< 9 n q )
X = Os(0) =S S B(T,(0P) Qs _plols_p)+1 S C0,(0P)) Q5 p(ols_p)
by induction m=2 [P]ePg [P]ePy

Theorem 4 (Andersen, B., Orantin, 17)

It A,B,C,D satisfy some decay conditions, then

e )y is a well-defined functorial assignment (absolute convergence)

e VQ,.(L) :/ Qs, . duwp is a well-defined continuous function of L € R}
Mg,n(L)

and it safisfies topological recursion in the form :

—

VQyn(Le,...,Ly) = Z/ A0l B(L1, Ly, ) VQqyn 16, Ly, ..., Ly,...,Ly)
m=2"Y R+

+%/

R

with base cases VQos(L1, L2, Ls) = A(Ly, Ly, Ls) and VQui(L) = [y, () D duwe

deae’ o' C(Ly,0,0") (mg_l,nﬂ(z, O Lay . L)+ Y V(6D V1 (£ 1’))

IUI'={Ls,....L,}
h+h'=g

2
s



IV From geometric to topological recursion — Examples

[ Am(Ly, Lo, Lg) = 1
Buni(Ly, Lo, £) = 2; (F(Li+Ly—4)+ F(Ly — Ly —4) — F(—Ly1 + Ly — £) — F(—Ly — Ly — {))
Take < Ca(Ly, €, 0") = Lil (F(Ly =€ —0') = F(—=Ly — £ — 1)) with F(z) = 2 In(1 + €*/?)
| Dur(o)= > Cu(le(0D),6,(7),6,(7))

y=simple
closed curve

Theorem 4  (Mirzakhani, 07)

(Ox(0) =1 forany ¥ and o € Ty

As a conseguence, fM .y duwp satisfies the topological recursion
9 g,n (L) POIog

In fact, the integral operators with kernels B and C preserve the space of even polynomials

L2i
A(Ly, Lo, L3) = Z A rei(L1)ej(La)er(Ls) with the basis ¢e;(L) = — '
1,7,k>0 (22>
/ dl¢ B(Ly, Ly, ¥) Z ! ei(L1)ej(Lo) yields the Airy structure we've seen before ...
R+ 1,7>0
/ Aede’ e C(Ly, 0,0 e; (¢ =Y Ciei(Ly)
IRZ

1>0

VO 1(L) =) Diei(L)

i>0



IV From geometric to topological recursion — Examples

The same thing can be carried on the combinatorial Teichmiller space

I isotopy class of proper embeddings of metric ribbon graphs }
T — f
G <+ Y. suchthat X retracts onto f(G) and labels agree

In his proof of Witten’s conjecture, Kontsevich constructed a volume form duxk

comb RE(G)
on the combinatorial Teichmiiller space  ME™P = Ts _ U +
Mod6 Aut G

G ribbon graph

type (g,n)
so that / dug = / exp ( ZL2 w,,,) PR
Meomb (L) M

ag,n

and used matrix model techniques to conclude

There is an analogue of Mirzakhani’s theorem in the combinatorial case

Its integration produces the Virasoro constraint/Airy structure for v -intersections

~+ geometric proof of Witten’s conjecture

(Andersen, B., Charbonnier, Giacchetto, Lewanski, Wheeler, to appear)



Thank you fov youv attention |

2d TQFT

(exact factorization) (non local factorization) : -
Integration on

. moduli space
v

» partition function
computed by topological recursion

)y [

.

A. Giacchetto

(Mg n)
\ 9,
\ spectral curves
\

Schwinger-Dyson equations <—— matrix models and the like



