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>, will usually denote a smooth bordered surface
oriented, connected (unless specitfied), genus g
n labeled boundaries 0,%,...,0,%
stable: 2—29g—n <0

|. Geometry of the combinatorial Teichmdiller space
I. Flowing from hyperbolic to combinatorial
Ill. McShane, Mirzakhani, multicurves

V. Thurston volume of unit balls



Geometry of the combinatorial Teichmiiller space



l.1 Combinatorial Teichmiiller space — Definitions

A ribbon graph is a graph with

- the data of a cyclic order at each vertex
- vertices have valency > 3

- faces are labeled from 1 to n

Combinatorial Teichmiiller space

Teomb _ { isotopy class of proper embeddings of metric ribbon graphs } D Mod?

G<> ¥ suchthat ¥ retracts onto f(G) and labels agree

pure mapping
class group

Combinatorial moduli space

com E(G)
Mcomb . 712 b . U IR—I—

b - B) A
ut G
MOdE G ribbon graph

type (g,n)



l.1 Combinatorial Teichmiiller space — Definitions

Examples of combinatorial moduli spaces

(gan) — <073) (gan> — (17 1)

TSP (L), ME™P(L)  loci with fixed boundary lengths L = (L4,...,L,) € R"

They are not smooth spaces, but rather polytopal complexes



l.1 Combinatorial Teichmiiller space — Definitions

The combinatorial Teichmtller space has an equivalent description
by measured foliations

MF% = | (F. ) F foliation with isolated singularities isotopies
o s U . . .
1t transverse invariant measure Whitehead moves
e e S SN EEPS B HIE N S S
(a) Internal regular point. (b) Regular point at the boundary of  (c) Regular point at the boundary of
transverse type. parallel type.
N
(d) Internal singular point. (e) Singular point at the boundary (f) Singular point at the boundary

of transverse type. of parallel type.



l.1 Combinatorial Teichmiiller space — Definitions

The combinatorial Teichmtller space has an equivalent description
by measured foliations

> ) { < TEomb <y MF}
homeomorphism onto its image

The image is the set of [measured foliations] where

- leaves are transverse to 0
- no saddle connections

——————————
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or !

(a) Internal regular point. (b) Regular point at the boundary of | (c) Regular point at the boundary of
transverse type. parallel type.
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(d) Internal singular point. (e) Singular point at the boundary (f) Singular point at the boundary
of transverse type. of parallel type.
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l.1 Combinatorial Teichmiiller space — Definitions

If v € 5% = {homotopy classes of simple closed curves}

we have a combinatorial length functions ¢(v) : 7:5°™" — R, (continuous)
- sum of edge lengths along the non-backtracking rep. on the graph

- intersection number with the measured foliation

1 n
. comb = /
Kontsevich 2-form on 75°"°(L) WK = 5 ; Z/ dé. A dY,
defined on cells, Mod$ - invariant T arornd 8,3
Lemma (Kontsevich, 91) WK is non-degenerate on cells corresponding to

ribbon graphs with vertices of odd valency only



l.1 Combinatorial Teichmiiller space — Definitions

1
Kontsevich 2-form on 735°™P(L) WK = — Z Z dl. N dl,

. 0 . . 1=1 e<e
defined on cells, Mods;, - invariant arornd 9,5

Introduced by Kontsevich in his proof of Witten’s conjecture

1- VLeR” Mg, = M$™(L)

Ad n
Wi > 1
2—VKL::/ S =/ ex (— L?z)
S gy st S, 2@; '

3 - matrix model representation ~» KdV hierarchy and Virasoro constraints
Dijkgraaf, Vafa, Verlinde (91)

Although T£°™"(L) and Tx(L) are homeomorphic, they carry different geometry

reflected in their respective symplectic forms wk and wwp



|.2 Combinatorial Teichmiiller space — Cutting and gluing

If 7 is an oriented simple closed curve, we can cut G € 7™ along v

- b
and obtain Gx_, € T52

boundary

boundary

Z

boundary

S

TN

boundary

regular leaves




|.2 Combinatorial Teichmiiller space — Cutting and gluing

If ¥'is a surface (possibly disconnected) with a choice of and G e eomb
two boundaries 91X’ and points p+ € 0. and TR '

we can defined a glued surface and Fg . € MF5. by sliding p_ of the amount 7

However, Fg» may have
saddle connections

Lemma 1 Fe.r € T5omP

except for countably many 7



|.3 Combinatorial Teichmiiller space — FN coordinates

Take a seamed pair of pants decomposition of X L 2

We have a continuous map

TSomP (L) —  (Ry x R)393+n

G —  (ls(7i), 76 (7)), L 3

(g.n) = (0,4) example

Theorem 2 (ABCGLW, 20)

This is an homeomorphism onto its image, which is open dense
with complement of zero measure

~ Combinatorial Fenchel-Nielsen coordinates



|.3 Combinatorial Teichmiiller space — FN coordinates

For each 7; in the pair of pants decomposition, define

0; determined by the seam

i image of §; by a positive

Dehn twist along 7; =
Combinatorial (9g - 9 + 3n)-theorem (ABCGLW, 20)
9g—9+3 . . o
TSomb(L)  — RS is a homeomorphism onto its image

G — (le(74), L6 (0:), La (1)),

In other words, one can express the twists
in terms of lengths of simple closed curves



|.3 Combinatorial Teichmiiller space — FN coordinates

For each 7; in the pair of pants decomposition, define

0; determined by the seam

i image of §; by a positive
Dehn twist along i

Idea of the proof

e In(1,1): 4 cases (top cells for the pair of pants), where one checks

(0) = It +[5 -],
Un) = |r(y)+el+[5 =],
inverted as 7(7) = %(@(n) -, ) - L () - (5t ) =

e In(0,4) : 4 top cells for each pair of pants — 16 cases to discuss



I.1 Combinatorial Teichmiiller space — FN coordinates

Theorem 4 For any seamed pair of pants decomposition in each open cell
(ABCGLW, 20) 3g—3+n
wi = Yy dfAdry
i=1

~» combinatorial analog of Wolpert's formula (83)
for Weil-Petersson symplectic form wrt. hyperbolic length/twists

Idea of the proof

Compute the vector field 9, in terms of edge lengths along 7:i (sliding)

Check it is the hamiltonian vector field for ¢;



Flowing from hyperbolic to combinatorial



II.1 Flowing from hyperbolic to combinatorial — Identification

For L € Ry, the Teichmdiller space of the bordered surface %

can be described as

hyperbolic metrics o on X / ,
Te(L) = Diffo (2 Mod?
2() {geodesic boundaries : ¢,(0;%) = L; } o(>) D M

e |tis asmooth space, equipped with Weil-Petersson symplectic form wwp

which is Mod$ -invariant
e |t admits Fenchel-Nielsen coordinates  Tx(L) ~ (R, x R)3975+"

and we have Wolpert's formula WWPp = Z dl; A dr;

e Thereisa (99 -9 + 3n)-theorem



II.1 Flowing from hyperbolic to combinatorial — Identification

The spine of a hyperbolic metric o is the locus of points in X

equidistant from two boundaries

Lemma (Luo 07, Mondello 09)

sp: T — 7§°mb

isa Mod% -equivari -
o — sp. (%) is a Mody, -equivariant homeomorphism

The inverse is poorly understood ...

Bowditch-Epstein flow (88)

SP b
o TZ(L) > 7’501“1 (L)
P B rescaling all edge Th : ; licit
dg lengths by 3 e map pPp Is not explicit ...
g comb
o Ts(BL) * —1 7= BL)

SP



II.2 Flowing from hyperbolic to combinatorial — Convergence

Combinatorial geometry is hyperbolic geometry with large boundary lengths

Bowditch-Epstein flow (88)

5P comb
o Ts(L) » T"(L)
P 5 rescaling all edge
®g lengths by 3
g comb
of Te(Bn) o D

Theorem (Mondello 09, Do 10) When B — o0

As metric spaces (2,87 10?) — sp(o) in Gromov-Hausdorff sense
Yy € S, B0 _, (v) — lsp(o)(y)  pointwise for o € Ts(L)

Poisson structure ﬁngﬂwp — Tk pointwise in 735" (L)



II.2 Flowing from hyperbolic to combinatorial — Convergence

Lemma 5 (ABCGLW, 20)

Forany e >0, thereis C.,, > 0 such thatfor 8> B 4n

for any simple closed curve v and G € T5°™P with sysg > €

los(7)
6 + Ce,g,n

los (/7)
p

</lg(y) <

where o =sp (G)

Idea of the proof

e (Do, 10) Upper bound OK, and lower bound

0.5(7) rs rg = maxd,s ((’92, V(sp(a)))
5 B E(v) = {edges along 7}

< ls(v) + 2|E(7)]

e No cycle shorterthan e = |E(v)| < cts(7)
€

¢ Area bound injrad_ s = max (%sysag,sup d,s (q,c‘?Z)) <
qEe>

o sys,s > e from upper bound, hence 73 < ¢ for 8 large enough




II.2 Flowing from hyperbolic to combinatorial — Convergence

Proposition 6 (ABCGLW, 20)
For each seamed pair of pants decomposition and compact K C T5°™P
there exists C% > 0 such that, for 5 > Bk

/
< Ck where o =sp ' (G)

Idea of the proof

e Use hyp. (99 - 9 + 3n)-theorem to write 7_7;(0'5) in terms of hyp. lengths for o’
e Prove commensurable upper and lower bounds in terms of comb. lengths for G

e Use comb. (9g - 9 + 3n)-theorem in reverse to write bounds solely with 7;(G)



II.3 Flowing from hyperbolic to combinatorial — PL structure

Change of pairs of pants ~ transformation of FN coordinates

Can be computed from the SLa(R)-character variety perspective on 7 (L) (Okai, 92)

For o with 8 — oo, they get tropicalized. (character variety perspective for comb. ??)

Example: flip in torus L .

cosh(%£) + cosh(¢)

( 9 B cosh(%)\/
cosh (%) - sinh(%) 2 0=+ [£ B £]
4 cosh (%) = Cosh(ﬁ)\/ cosh” (%) (cosh(F) + cosh(¢)) — 2sinh”(3) — : "
2 2 coshz(%) (cosh(%) + cosh(ﬁ)) + smh2( )( h(%) 1) 1T’ = —Sgn(T)’€ — [% — 5/]+‘
| sen(r’) = —sgn(r)
hyperbolic combinatorial

Corollary 7 (ABCGLW, 20)

TSP (L) admits a piecewise linear structure (given by comb. FN coordinates)



McShane, Mirzakhani, multicurves

Summary

1. there is an analogue of Mirzakhani-McShane identity on T5°™"

2. integrating it (using Wolpert comb. formula) gives a recursion for

wIA{dE 1 — 5
K7y ._ _ =N 120,
Ve (L) ._/M%C)mb(L) i /Mg,n exp (2 ; z%)

(geometric proof of Witten’s conjecture - Virasoro part)

3. this generalises to statistics of multicurves wrt. hyp. or comb. lengths

and fits in a general formalism geometric recursion / topological recursion



l11.1 McShane-type identities (hyperbolic)

Mirzakhani (07) established a partitition of unity on 7Tx(L)
generalizing a identity of McShane (91) for the punctured torus

Strategy in a hyperbolic surface (X,0) with 29 —2+n > 2

e from p € 01X, shoot a geodesic nporthogonally to the boundary
and stop it at the first intersection with itself or with 9%

* apart from rare pathological cases, it determines an embedded pair of pants P,
with geodesic boundaries and bounding 0, %

cwite 1= S L(peas | [B]=[P])




l11.1 McShane-type identities (hyperbolic)

o _ {r homotopy class of P — X 0P =0% }
n % | suchthat ¥ — P stable P = 0,,%
Ps = PE ) U PL r
. (mL_JZ > ) > pm _ | homotopy class of P < 3] 0P =0% }
= k such that 3 — P stable 02 3P C ¥
1
Bu(Ly, Lo f) = o= (F(Li+ Ly = ) + F(Ly = Ly =€) = F(=Ly + Ly — £) = F(~Ly — Ly — 1))
1
1
Cym(Ly, 0,07 = L( (L1 —€—{0)—F(—Ly — ¢ 1)) with F(z) = 2 In(1 4 ¢%/?)
1

Theorem (Mirzakhani, 07) For 29 —2+n >2 andany o € Ty

(a) S‘ Y Bu(l,(0P)) +— > Cum(l,(0P))

m=2[PlePg [ lePL

(b) Topological recursion for the WP volumes (using Wolpert's formula)



l11.2 McShane-type identities (combinatorial)

We can apply the same strategy in the combinatorial setting

Assume 2g —2+mn > 2 and a combinatorial structure G on X

e For each p, we have an associated |Pp] € Ps

depending only on the edge to which p belongs

012
e
O3 P >< .p 0o P
01X

6@(6) = %(Ll — KG(ébP) — €G<83P))

o Conversely, [P] € Ps appears in this way (at most 3 times)
iff (g(OPNO%) > lg(OPNY)



l11.2 McShane-type identities (combinatorial)

1

B (L17L27€) 2L
1

(L1 + Ly — )4 +[L1— Ly — ]y — [-L1 + Lo — {])

1
Cic(Ln, 6, 0) = 2-[Li =€ =€),

Proposition 8 (ABCGLW 20) For 29 —2+4+n >2 andany G e 75omb

(a) 1 = S‘ S‘ BK f@ 8P —|—% Z CK(Zg(ﬁp))

PlePE PeP

(b) Topological recursion for Kontsevich volumes (using Wolpert comb. formula)

~ geometric proof of the Virasoro part of Witten’s conjecture

(a) and (b) can also be proved by flowing Mirzakhani’s results from hyp. to comb.
thanks to uniform control on lengths



l1l.3 Counting multicurves

Let My (resp. Msy;) be the set of (primitive) multicurves on ¥

and ¢ : R—= Ry suchthat ¢(¢) = OW™) and @) = O *T°)

f— 00 £—0

We consider multiplicative statistics of lengths of multicurves

e hyperbolic world : o€ Tx Onmlpl(o) = Z H p(s(B))
YEMy, BEMO(7)
o combinatorial world : G e T5omb Ok |e](G) = Z H p(ls(B))

YEMg, BETO ()

We can generalize Mirzakhani identity, to compute these functions by recursion

Using Wolpert formulas, this implies topological recursion for integrals
over the moduli spaces

fits in a general theory : geometric recursion == topological recursion

(Andersen, B., Orantin, 17)



l1l.3 Counting multicurves

BIf|(Ly, Lo, £) = B(Ly, Lo, £) + £(¢)
C[fI(L1,0,0") = C(L1,£,0") + B(L1,6, ") f(£) + B(L1, 0, 0) f(¢') + f(£) f(¢')

Let us define

Theorem 9 (Andersen, B, Orantin 17) For 2 —2+n > 2

(a) Y > Bulel(le(@P) s plolsp)+5 Y Culel(T(OP)) 05 pll(ols r)

=2 [P]lePg [P]ePL

(b) VQg,ll(L) = / " dpwr () Q53 [¢](0)  exists and satisfies topological recursion

Theorem 9' (ABCGLW 20) For 29 —2+n > 2

@) OSEE) =Y Y Buldl(fa(0P) 95 ol (Glsr) +5 > Cxlel(Ta(@P)) 5 ple)(Gls_p)

m=2 [PlePg [P]eP

(b) VQg,lel(L) = /M - dux (G) 25[#](G) exists and satisfies topological recursion



l1l.3 Counting multicurves

Idea of the proof of (a) same in hyperbolic or combinatorial worlds

Qlel(o)= D 1] #(8) 15 (0ls—r)

YEMYE Bemo ()

=3 I ot Y Xarlols—p)

yEM BeEmo () [P]l€EPs_,

[PlePs yEMy, _p

use Mirzakhani identity

and collect the weights

bl bl

A = Q(),g =1 2

@



IV

Thurston volume of unit balls



IV.1 Thurston volume of unit balls — Definitions

Let MFy C MFE

be the set of measured foliations where 9 is a union of sing. leaves

It admits a piecewise linear integral structure and dim MFy, = 6g — 6 + 2n

{Integral points of MFyx}= My = {multicurves}

Thurston measure of A ¢ MFs

. JANET M| ., .
prn(A) = klggo | k69_6+2n2‘ if exists
Hyperbolic Combinatorial

Length functions

EXMFE—)R+

TLomb 5 MFy, — R4,

Vol. of unit balls

Bs:(0) = prn({€o < 1})

B (6) = ({6 < 1))

Moments on
Teichmuller

V°Bgn(L) = /M d(ﬂé\;VPw)(@E(U))S

dux (G)(B=(G))

mb
comb (L)

V@M (L) = /
M

S




IV.2 Thurston volume of unit balls — Hyperbolic case

Known results for punctured hyperbolic surfaces ¥

e By : Ty — R, iscontinuous, proper, and

1 1 . .
c < Bx(o) <cyn — Mirzakhani (07)
’ vgz lo ()| In(ts(7))) ’ ,ygz lo(7)
£y (v)<e £y (v)<e

— V*®By,(0) isfinite for s <2 and infinite for s > 2

e Finer upper bound =—> VZ@g,n(O) is finite Arana-Herrera, Athreya (19)

e Relation to Masur-Veech volumes

QT -—» MFg xMFy <Z- 7Ty x MFy Bonahon (96)

5% UTh & UTh UwWp & WTh Mirzakhani (08)

Delecroix, Goujard, Zograf, Zorich (19)

1 . MMV(Qé,n) - .
— V'B,,(0) = Y127 (6g — 61 2n) - (dg — 41 1! Monin-Telpukhovskiy (19)

Arana-Herrera (19)

Open problem : compute explicitly Bx(c) and (VSQ%g,n(L))S#l



IV.2 Thurston volume of unit balls — Hyperbolic case

e There are by now many ways to compute the Masur-Veech volumes

(sums over stable graphs, 2 topological recursions, intersection theory on M, )

Mirzakhani (08) ABCDGLW (19) Chen, Méller, Sauvaget

Delecroix, Goujard + B, Giacchetto, Lewanski (19)
Zograf, Zorich (19)

e V'®B,,.(L) isindependentof L e RY%, ABCDGLW (19)

Problem :  compute explicitly Bsx(o) and (VS@Q’”(L))s;ﬂ ?



IV.3 Thurston volume of unit balls — Combinatorial case

The combinatorial setting is easier as one can make explicit computations

My, = {multicurves, possibly including components homotopic to boundaries}

Let G € T5°™" and assume the underlying ribbon graph G s trivalent

Le EG(V) = ZeeEG Le EG(e)

LA
. xe _|_ xel — xell
/ r. = #times 7 travelsalong € TA = 5

Te
G
ﬁ My = Z& ={zeN"¢ | VA za €N}

Ter My —Zg={zezg | Vi min zs=0}

Lemma 10 BXL™P(G) s the euclidean volume of a union of polytopes in R69—6+2n

_ Z 1 1 where Rg,; is a set of (6g - 6 + 2n)
di 1l,er,. . tc(r) simple cycles and dumbbells, and d; € N*




IV.3 Thurston volume of unit balls — Combinatorial case

1

Example @%Omb(gA,Engc> = 1 + CyC.
(9.m) = (1,1) 2 (et )
B L/2
(U Ile) U L) (le +Ly)
(L/2)%~1 / dadb
0 0 VS@comb L) = .
B ‘ ) =T s (@101 —a)(1 - D)
2
in particular Vlﬁf?lmb(l}) = 116 : 27; =V'®1(L)

L=2ls+{p+Lc)

generically Z3 x Z5- symmetry

We can deduce that V*®¢mP(L) is finite iff s < 2, and has a simple pole at s = 2



IV.3 Thurston volume of unit balls — Combinatorial case

Lemma 11 Vl@g,n(L) = Vl@g?ﬁnb(L) is independent of L € RY,

(proof : because both can be computed)

so Masur-Veech volumes can be approached as well from combinatorial geometry

(bypassing horocyclic foliation and hyp. geodesic dynamics)

In general, there is less integrability than in the hyperbolic case

(absence of collar lemma)

Theorem 12

spcomb - o
VBT (L) s finite

iff s<s,,<2

(B, Charbonnier, Delecroix, Giacchetto, Wheeler, to appear)

4 5 > 6

2 | 2 | 53+ sy
11 2 5
2 g L+ 53,1
>3




IV.4 Thurston volume of unit balls — Comparison hyp./comb.

Sp

o Ts(L) - TSmb(L) G
pg " Jacobian )
—[ ®pg T 1 prdpwp
o - B [369—6+2n
o TmpL) ——— Tz (BL)  BG
SP
e Bylemmab Bh—{go 569_6+2nP;@2 = BL™P yniform cv. on thick parts of 7o

e By Mondello (09) Bh—{go Js =1

.. VB, (BL)
spcomb g,n
Fatou lemma — V @g’n (L) < 11511_1>1£f 5(69—6+2n)(s—1)

e For s>s,,,LHSinfinite = anomalous scaling of V°3, (L) for large length

e Bylemma 10, for s =1, both sides are equal (independent of L thus )

Miss a uniform ‘integrable’ bound on Jjs to study equality for s <s, ,



Thavk vou For vour attention |

A

A. Giacchetto

based on

Topological recursion for Masur-Veech volumes
with J.E. Andersen, S. Charbonnier, V. Delecroix, A. Giacchetto, D. Lewanski, C. Wheeler

math.GT/1905.10352

On the Kontsevich geometry of the combinatorial Teichmiiller space
with J.E. Andersen, S. Charbonnier, A. Giacchetto, D. Lewanski, C. Wheeler

to appear

Around the combinatorial unit ball of measured foliations on bordered surfaces
with S. Charbonnier, V. Delecroix, A. Giacchetto, C. Wheeler
to appear



