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Problem

What is the minimal framework needed to define topological recursion ?

The original work of Eynard emphasized the role of “spectral curves”

These are complex curves with extra data, and TR builds from it a sequence of
multidifferentials {wg,n : g €N, n € N*} by induction on 2g -2 + n



Problem

What is the minimal framework needed to define topological recursion ?

TR solves many problems in enumerative geometry

The enumerative information is stored in the periods of wy,»
Bouchard-Klemm-Marifio-Pasquetti (07) proposed to see TR as

the definition of the B-model amplitudes associated to the spectral curve

The link to enumerative geometry (for them, GW of toric CY3) is an instance of

mirror symmetry



Problem

What is the minimal framework needed to define topological recursion ?

Eynard and Orantin’s insights (07) were

- promoting TR to an intrinsic construction from the geometry of spectral

curves (independently of their origin from matrix models or mirrors of CY3, ...)

- stressing its properties in greater generality
(link to special geometry, holomorphic anomaly equations, symplectic invariance, ...)
This perspective led to the discovery of many new applications of TR

(Weil-Petersson volumes, intersection theory on M, ,,, CohFTs,
Hitchin systems, WKB expansions, knot theory, special geometry, ...)



Problem

What is the minimal framework needed to define topological recursion ?

As of now, there are no satisfactory set of assumptions (nice, minimal, general
enough) specifying for which spectral curves TR should be definable

However, we expect that having it would
- enlighten the profound algebraic nature of the ‘invariants’ that TR constructs
- explain its properties (notably : symplectic invariance) by relating it to

deep (7?) results in algebraic geometry

- relate to a classification of 2d topological field theories



Definition

A spectral curve is a quadruple S = (C,x,y, wo,2) where

C is a complex curve
x meromorphic function ~» a = {zeroes of dx}

y meromorphic function ~» w1 = ydo

woo € HYO(KE?(2A),C%)%? has biresidue 1 on the diagonal A

The output of TR will then be, foreach g € N, n € N*
wgn € H (KC(*a)gn, C’”)Gn



Original setting (Eynard-Orantin, 07)

Assumptions

C is smooth, a is finite and foreach a € a U,
dy(a) # 0 as ” L,
a is a simple zero of dx 0a(2)

« in a small neighborhood U, of a =z ' (x(2)) NU, = {z,04.(2)}

Definition By inductionon 2g-2+n >0

no wo,1

h+h'=g
JuJ' =I

wg—1,n+1(2,04(2),I) + Z wh,1—|—|J|(zaJ)wh’,1+|J’|(0'a(Z)7J/)

)



T
- ;wo 2(+, 21) e

ZR_GS J (Wg—l,n+l(zaaa(z)7l) T Z Wi, 14171 (% J)Wh 14071 (0a(2), J7)
com=a (y(oa(2) — y(2))da(2) bt =g
JUJ'=I
Symmetric in z1,..., 2, although the definition is not

Terms are in 1:1 correspondence with diffeo class. of embedded pairs of pants
P < 3%,, suchthat ,P =0,%,, and x(X4,—P) <0

Wh,1+4|J| Wh!, 14| ']

)



Assumptions C is smooth, a is finite
(EO 07) Foreach a €a, dy(a) #0

a is a simple zero of dx

Other behavior fory ?
Definition only depends on local information near as

Insensitive to the invariant part of y under o,

If y = 0 near a : ill-defined.

Otherwise, near a: y ~ ¢, - (x — z(a))®/?>~ mod C(x)

Sq < —1 :1wgn=0 for2g-2+n>0

S, = : application in the works of Chekhov, Do, Norbury, ...

s, = 3 :majority of applications

S, > 5 :wp3 not symmetric



Can one find a good definition of TR for more general spectral curves ?

A good definition of TR means :

- Wy n defined by recursion on 2g-2 +n >0
- Terms are in 1:1 correspondence with diffeo. class of embedded stable surfaces
¥ < ¥, , suchthat 9;%' = 9,%,, and [x(X")] <29 —2+n

- it reduces to EO definition when C is smooth, dx has simple zeroes at which dy # O

- Wy n(21,...,2,) issymmetricin z1,..., 2,

1. Higher order ramification points

2. Singular curves

3. Airy structures from W-algebras :
correspondence with TR and investigation of symmetry



1. Higher order ramification points



1. Higher order ramification points

Bouchard, Hutchinson, Loliencar, Meiers, Rupert (12) proposed
a definition for higher order ramifications

Assumptions C is smooth, a is finite

Foreach a € a, dy(a) #0

a is a simple zero of order r, — 1 of dx Tq 2 2
Uq
fa(z) = ;U_l(aj(z)) NU, = {Za Ua(z)7 SO O-Z;,a_l(z)} OCL‘. _ZC> ___________ . .

A\

fa(2) = fa(2) \ {z}



1. Higher order ramification points

fa(2) =27 (2(2)) NUs = {2,0a(2), .., 05" (2)} 28fe T o

fa(2) = fa(2) \ {z}

f; w0,2(21, )
[Lcz () —y(2))dz(z)

Recursion kernel K \™(z1,2,Z) = —

no wo,1
Known from induction:  Q, ,, ,(Z;1) := E H Wyp LI+, (£, 1L)
L-Z LeL
ULELIL:I

m+> . (9gr—1)=g

Recursion formula :

an(ornza vz = SoRes (30 KU (1,2, 200 (0 20))

aca ZCF(2)




1. Higher order ramification points

[, =0
_/
Terms are in 1:1 correspondence -
With [30 1ot < Sgnl = I
&%
1 ol
C L

To evaluate their contribution :
Label the () by the elements of Z C §,(z) = {04(2),...,0* " (2)}

For each stable connected component that remains after excision

LCZ/
with abeled by 07 L C the weightis wg, |p|+(1.| (L I1)

© labeledby 1, c 1= {zo0,...,2n}

A left corresponds by convention to L = {z'}, I, = {z;}, g =0

and its weight is wp 2 (2, 2;)



1. Higher order ramification points

Assumptions C is smooth, a is finite

Foreach a € qa, dy(a) #0

a is a simple zero of order r, — 1 of dx Tq = 2

Bouchard-Eynard (13) give an argument to prove symmetry of wgn in that case

by deforming to a regular curve. It applies when

Y~ Cq - (T — :I?(a))s‘l/"“"l_1 mod C(z) with s, =1, %1

Theorem 1 (Bouchard, B., Chidambaram, Creutzig, Noshchenko 18)

Wg,n is symmetric if and only if
Sq €41,...,7¢ +1} and r, = £1 mod s,

or Sq <0 (in which case contributions from Res vanish)

zZ2=Qa



2. Singular spectral curves



2. Singular spectral curves

Let C is be singular curve (with zeroes of dx at singular points)

"‘... ‘.”’ .
o w® Locally around each a € a, z admit
e, . . . dg
: a ramification profile (Tu)u=1
- X °
U,| as.iom =, 4. .
o~
o
............ ; Here (r1,72,73) = (4,3,1)

Examples nodal curve, with a zero of dx at the node

reducible curve, such as (y* —z)* =0
d

[ —as) =0

p=1



2. Singular spectral curves

Let C' is singular curve (with zeroes of dx at singular points)
In a normalisation 7 : C — C, let a, C U, be the set of zeroes of dz

Ua U,
e ‘ﬂl. ° ‘o
® ., ‘.‘..‘ E..”'.
¢ A T . T . For 1 € a,, we denote r, — 1
............ Q: > .l °® —_— Y _
ot o, the order of the zero of dz at
.......... . o ¢ (rp > 1)
/JL3 ------------ .
x

To define TR, we will rather work on the normalisation



2. Singular spectral curves

Definition A singular spectral curve is the data of (7 : C — O,z Y, Wo,2)

where m : C' — C' is a normalisation of complex curves

X,y are meromorphic functions on C

wo.2 € HO(K§2(2A), C?)®2 has biresidue 1 on the diagonal A

~

~ T =xom,y=yom are meromorphic functions on C
Each zero a € a of dx splitsinto aset a, =7 '(a) of zeroes of dz

For i € a,, we denote 7, — 1 the order of the zero of dz at o (r, > 1)

U, U,
~ ".‘. 0”‘ "0 [ ) O
MR ® .‘. ."0
U 11 '.‘a'o[{‘ 1 o u°
K¢ & ‘.0" E. .‘.'
~ :: /7"' : a’; [ ]
o .
UMQ .......... .““U; _> _____ ? ""'é [ ) _> .......... @
([ ] “ .: ‘$
- . A
Uy, e *
us3 ° Hs  eemesseee P




2. Singular spectral curves

It is natural to propose the following definition of TR

fa(2) 1= 27 (2(2)) N Vs
Fa(2) = fa(2) \ {2}

Recursion kernel K/Sm)(zl, 2, 7) = —

f: w0,2(217 )

[1.ez (9(2) — 9(2))di(z)

no wo,1

Known from induction:  Q, ,, ,(Z;1) := Z H Wyp LI+, (£, 1L)

| /A LeL
ULELIL:I

m+> . (9gr—1)=g

Recursion formula :

W (21,22, ) = D D R:( > K,S'Z+1><zl,z,z>ﬂg,|2|,1<z,Z;I>)

Y a€a pcd, ZCH,(2)

Same structure as before (using C'), but the fiber f.(2) is larger



2. Singular spectral curves

Each zero a € a of dx splitsinto aset a, =7 '(a) of zeroes of dz

For 1 € a,, we denote r, — 1 the order of the zero of dz at p (r, > 1)

Near u we have 3~ ¢, - (& — #(u))**/™ =1 mod C(&) forsome s, € ZU {oo}

. - S S
We can always identify a, ~ {1,...,d,} so that =& < ... < Fda

T Tua,

Theorem 2 (B., Kramer, Schiuler, 20)

For each a € a, assume that
1. Foreach u € a,, we have s, €{1,...,7, +1}
except for s,,. which could also be oo if d, > 2

2. If do =1 (a is smooth), then r, = =+1 mod s,
3. If dy =22,then ry,, = —1mod s, & sy, =-"=8,4, =1 & 1y, =1mods,,

4 C"'L"Lu 7é CZV whenever TSy = SuTy for distinct M,V € aa

Then wy., IS symmetric



2. Singular spectral curves

Examples : fitting the assumptions not fitting the assumptions

y(y" —x) =0 (y> —2)?2 =0, y° =0, reducible curves
(zy® = 1)(y* —2) =0

~~ recursion kernel ill-defined

(zy® = 1)(z(y —1)* = 1) =0

~ w1,2(21,22) non-symmetric

Theorem 2 (B., Kramer, Schiuler, 20)

For each a € a, assume that
1. Foreach u € a,, we have s, €{1,...,7, +1}
except for s,,. which could also be oo if d, > 2

2. If do =1 (a is smooth), then r, = =+1 mod s,
3. If dy =22,then ry,, = —1mod s, & sy, =-"=8,4, =1 & 1y, =1mods,,

4 C"'L"Lu 7é CZV whenever TSy = SuTy for distinct M,V € aa

Then wy., IS symmetric



2. Singular spectral curves

We can get necessary conditions on (7., S, cu), to get symmetry by examining low (g,n)

For symmetry of wo,3 and wo 4, they are weaker than the sufficient conditions of Thm 2.

Theorem 3 (B., Kramer, Schuler, 20)

If the proposed recursion yields symmetric wo,3 and wo 4

for generic values of (c¢u), and ged(r,,s,) =1 forall u

Then for all a € a we must have 1., 2. and

3 |f daZZ,then i — —1 mod S & Spgs -+ Spa, —1 6{1,2} & Tua, — 1 mod Spua,

| believe the conditions of Thm 2. are optimal for generic (),



2. Singular spectral curves

This puts constraints on the (naive) definition of deformation theory
(no Frobenius mfd structure ?)

Perhaps TR would still have a good definition in those pathological cases,
but it would have to be different.

There are external motivations to look for such a thing.

Eg : can one reconstruct from some TR the WKB expansion of solutions
of an ODE whose characteristic variety is (y —1)" =0 ?

(example : Picard-Fuchs equation for compact CY3 — having a point in moduli with
maximal unipotent monodromy)



2. Singular spectral curves

This puts constraints on the (naive) definition of deformation theory
(no Frobenius mfd structure ?)

Perhaps TR would still have a good definition in those pathological cases,
but it would have to be different.

There are external motivations to look for such a thing.

Eg : can one reconstruct from some TR the WKB expansion of solutions
of an ODE whose characteristic variety is (y —1)" =0 ?

(example : Picard-Fuchs equation for compact CY3 — having a point in moduli with
maximal unipotent monodromy)



3. Airy structures from W-algebras



3. Airy structures and TR

Airy structures (Kontsevich-Soibelman, 17) provide the minimal algebraic framework in
which topological recursion can be defined (not necessarily based on spectral curves)

Let V = complex vector space, with a basis of linear coordinates (z;)icz

Dv,n = Clh, (h0z, )i, (z:):] graded algebra of differential operators on V
degx;, =1, degh = 2

Definition  An Airy structure is a family (H;)iez of elements of Dy, satisfying

- degree 1 condition : H; = h0,, + O(2)

- Lie ideal condition: A '[A, A CDyp-A with A :=span(Hy)
keT



3. Airy structures and TR

Definition  An Airy structure is a family (H;)iez of elements of Dy satisfying

- degree 1 condition: H; = ho,, + O(2)
- Lie ideal condition: A '[A, A CDyp- A with A:=span(Hy)

keT
Main property There exists a unique formal function on V
(KS17) F=Y 450 n50 B F,, with F,, €Sym(V*)®"
29—2+n>0

such that Vi e Z, Hie" =0

F,,, computed by a recursionon 2g-2+n>0

Terms are in 1:1 correspondence with diffeo. class of embedded stable surfaces
Y <X, , suchthat ;%' =0:%,, and |[x(X)|<29—-2+n

Symmetry is implied by the Lie ideal condition



3. Airy structures from W-algebras

Strategy to construct Airy structures : look at VOAs that
1. consider a VOA that admit a free field representation (i.e. in some Dgjiy,n)
2. identify some gr. Lie ideal of the algebra of modes

3. conjugate the representation to match the degree one condition

for generators of such an ideal

This can be carried out at least for W(g) at critical level,

when ¢ = direct sum of simple, simply-laced Lie algebras

This approach finds its roots in the work of Milanov (16)
and was systematised in BBCCN 18

Here we focus on g = gl,



3. Airy structures from W-algebras

Cartan algebra h = C” with Killing form (-, )
Weyl group &,

Heisenberg Lie algebra b = (h[tT'] ® CK) @ C[A]
with relations [€ ®t™,n & t"| = A€, n)MIm+no0 and K central

Fock space  Fr = Sym®(h[t]) @ C[h].|0) is a module for b,
where &, :=£¢6®1t", n >0 acts by killing |0) and K acts by 1.

The Fock space has a structure of a VOA
Y : Fn — (EndFp)[[tF1]

defined by Y (£_1,t) = Sk

tk+1
keZ

l
1 drid -
y(e®) el H T 'dtkj_ly(é’hm,t):

where the normal ordering : : in @ monomial pushes

negative modes to the left, positive modes to the right



3. Airy structures from W-algebras

The W(gl,.)-VOA at critical level has many equivalent descriptions
(Fateev-Lukyanov 88, Arakawa-Molev 17)

For us, it is the sub VOA of Fj freely and strongly generated by

w; = ei(x(_li, . ,Xﬁ“{)|o> e; I-th elementary symmetric polynomial
ied{l,...,r} (xX"))i=1 orthonormal basis of b = C”

W.
We decompose in modes Y (w;,t) = ) tzi:
kez

(Wa k)kez form a Virasoro algebra with central charge ¢ =r

More generally [W; k, W;,] are nonlinear combinations of (Wi k)i i

(W-algebra first introduced by Zamolodchikov, 85 for r = 3)



3. Airy structures from W-algebras

Let A be (a certain completion of) the associative algebra

generated by the modes (Wi k)i«

The constitutive ppt of VOAs give automatically two gr. Lie ideal in A

The vacuum ideal A(-ygeneratedby (Wi @ @ €{1,...,7}, k+i—12>0)

The conformal ideal 2,y generatedby (Wi, : i €{1,...,r}, k>0)

We can in fact construct more for W(gl,.)

Lemma 4 (B., Bouchard, Chidambaram, Creutzig, Noshchenko, 18)

Let A r be a (weakly decreasing) partition of r
Set A(¢):=min{j | A1+ -+ X\ >i}
Then (Wk,; : @ €{1,...,r}, k+ A(i) > 0) generates a gr. Lie ideal A, C 2



3. Airy structures from W-algebras

For each o € G, there is a o-twisted representation of the VOA Fj in Dy p

Take o=1---r)(r1+1---r14+mr9) - (r—rq_1+1---7)

Tu

Use the Fourier basis of the Cartan 0% = Z 217 ad /Ty (Gt
j=1
d
The twisted representation in question, with V' := GB GB C.(x}) reads
u=1 k>0

I (18, if k>0
Yol Q) = > i with =40 if k=0
kea/r,+7Z ——kxﬁ%: if k<0

\

This restricted to an (untwisted) representation of W(gl,.)

by differential operators on V

The mode W, is represented by a degree i differential operator



3. Airy structures from W-algebras

The mode W; ;, is represented by a degree i differential operator

To match the degree one condition in Airy structures, we can break homogeneity

by performing a dilaton shift Ji — Ji — 7,¢u0k+s,,.0

The classification of W(gl_r) Airy structures amounts to :

Classify the (7, sﬂ)szl and A F r for which one gets in this way
Wik = hoyy, ., +O0(2) and II : 7, — {1,...,d} x N* is a bijection

up to some linear change of variables (Yu,k)uk — (T%)uk

This led to the sufficient condition of Theorem 2 (Y. Schiler's master thesis)



3. Correspondence with TR

A _ _1 J
T=€Xp Z(h1F0,1[_uk]+h zFél[fk])?k )
. . HEQ

From any such Airy structure, one can obtain koo )
other (isomorphic) ones by conjugation with ( . ]y],,\

- v k-1

<I>=eXp E ~F(),z[_'uk_l] kl

\ U,V EQ )
k,[>0

Theorem 5 (B., Kramer, Schuler, 20)

The Iy n of the corresponding partition function are the coefs of expansion
of wg,n computed by TR on a suitable basis of differentials,

for a singular spectral curve (local expansion of y and wp 2 specified by

Fo1,Fp2 as above)

Actually more precise : TR formula iff V(i,k) € Z, s Wi - el =0

It Z,s =Z) forsome A r,thisis an Airy structure so wg,n is symmetric



Conclusion

All these Airy structures can be built from the elementary ones by
- more general dilaton shifts (expansion of y)

- direct sums (several zeros of dx)

- conjugation by exp{quadratic diff op.} (choice of wo,2)

Their partition function is therefore obtain by action of operators on products

of elementary partition functions (attached to each zero of dx)

~»  Givental-like decomposition



Conclusion

d

Foreach T = (7., 5,, Cu)“:}z

satisfying the assumptions of Theorem 2

TR for the spectral curve H (" (y/cy)™ — 1) = 0 equipped with
u=1
produces a sequence of generating series

We expect them to have an interpretation in terms of intersection theory on

certain moduli spaces of curves



Thank you for your attention !
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