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stable: 2—29g—n <0
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Hyperbolic and combinatorial Teichmiiller spaces



.1 Two Teichmiiller spaces — Hyperbolic geometry

e The Teichmiiller space of the bordered surface ¥ is defined as

T diffeo. f : S = X /
> S bordered Riemann surface

ps -2, pg' @ biholomorphic, preserves 0;
NCT flo®o f! isotopic to id
D>

among diffeo. preserving 0;%

(f,S) ~(f,S") when

e The pure mapping class group
Mod% = {¢ € Diffs | Vi ¢(9;%) = 9,5} /Diffo(%)

acts on Tx, with finite stabilizers

e The moduli space of bordered surfaces is defined as My (L) = T5:(L)/Mod%



.1 Two Teichmiiller spaces — Hyperbolic geometry

e It can be described via hyperbolic geometry
hyperbolic metrics o on X / ,
Ty = Diff (%) Mod?
. { with geodesic boundaries } D .

Simple closed curve v ~» hyperboliclength 4(v) : T — R,

e Tx isasmooth manifold of dimension (6g — 6 + 2n) + n
(Thurston) T — IRLSFE is an embedding Sy, = { simple closed curves |

(99 — 9 4 3n well-chosen curves suffice)

o Lociwith boundary lengths L € R} are denoted Ts(L), Ms(L)

e On moduli space we dont have length functions for non-boundary curves



.2 Two Teichmiiller spaces — Combinatorial geometry

A ribbon graph is a graph with

- the data of a cyclic order at each vertex
- vertices have valency > 3

- faces are labeled from 1 to n

Combinatorial Teichmiiller space

Jeom _ { isotopy class of proper embeddings of metric ribbon graphs } D Mod?

G<> ¥ suchthat ¥ retracts onto f(G) and labels agree

pure mapping
class group

Combinatorial moduli space

E(G)
comb __ ngomb _ U RY cells are glued when related
> Mod% Aut G by edge contraction ~~ topology

G ribbon graph
type (g,n)



.2 Two Teichmiiller spaces — Combinatorial geometry

Examples of combinatorial moduli spaces

(g,m) =(1,1)
T@ % @7 -y \ =~ Rox \k
@ ____________________________ @ @)

7/67
TSP (L), ME™P(L)  loci with boundary lengths L = (L4,...,L,) € R"

They are not smooth spaces, but rather polytopal complexes



.2 Two Teichmiiller spaces — Combinatorial geometry

Topology on T5°™

Consider the simplicial complex As

vertices  non-trivial isotopy class of proper embeddings (i.e endpoints on 9% ) of unoriented arcs

simplices classes of non-intersecting arcs ai,...,a; such that

all components of £\ Ui_, a; are simply connected

Ts — Cone(As) induces a topology on 75°™" Luo 07
G +— ) cr.lale)ae (actually a homeomorphism) Mondello 09

«. arc dual to the edge e




Two Teichmiiller spaces — Combinatorial geometry

The combinatorial Teichmtller space has an equivalent description
by measured foliations

MF% = | (F. ) F foliation with isolated singularities isotopies
o s U . . .
1t transverse invariant measure Whitehead moves
e e S SN EEPS B HIE N S S
(a) Internal regular point. (b) Regular point at the boundary of  (c) Regular point at the boundary of
transverse type. parallel type.
N
(d) Internal singular point. (e) Singular point at the boundary (f) Singular point at the boundary

of transverse type. of parallel type.



.2 Two Teichmiiller spaces — Combinatorial geometry

The combinatorial Teichmtller space has an equivalent description
by measured foliations

D e T

homeomorphism onto its image

The image is the set of [measured foliations] where
- leaves are transverse to 0X
- no saddle connections, i.e. singular leaves joining 2 singular points

Combinatorial length  £(v) : 75°™ — R, (continuous)
- sum of edge lengths along the non-backtracking rep. on the graph

- intersection number with the measured foliation



.3 Two Teichmiiller spaces — Combinatorial lengths

Lemma1 ¢ : 75" — R9¥ is an homeomorphism onto its image

Idea of proof  Reconstruct arc lengths from 0-lengths of embedded pairs of pants

Useful next week

. i homotopy class of P < & O P = 0;%
i _ ] homotopy class of | 1J _ PY
> { a:[0,1]— ¥ ‘ a(0) € 0;% } Py { such that ¥ — P stable 0o P = 0;%
; " i DLt _ homotopy class of P < 3 0P = 0;%
Ps, = U Py > such that ¥ — P stable Oy 3P C %
j=1

We have amap AL — Py and for G € 75°™, amap EY — |, A4

Fe|_m Sy




.3 Two Teichmiiller spaces — Combinatorial lengths

. x [ homotopy class of P — ¥
i __ ] homotopy class of | 1J _ 4
> { a: 0,1 <= ¥ ‘ (0) € 0% } Py 1 such that ¥ — P stable
n P (
. i phi — | homotopy class of P— 3%
Ps = U Ps > | such that ¥ — P stable
j=1

Image(EY — U, AL, — Ui, PL) = {G-small pairs of pants}

G-small means (g(OP NOX) > (g(OP NY)

Qe

BlP = &Z
0P = 0,

P = 0;2
82,3P C XOJ

}
}



.3 Two Teichmiiller spaces — Combinatorial lengths

o If [Pl€PY (i) write Ig(OP) = (L1, Lo, ) ¢ P € TEomP

1
By (L1, Lo, £) = —([Ll + Lo =4y + L1 — Ly — ¥+ —|[—L1 + Ly — 5]+)
214

is the fraction of 0; P not common to 03P (once retracted to P)

>Qiff Pis G-small

o If [PlePy, write lg(OP) = (L1, ,0) <> P € To™ ‘

1
Cx (L, 0,0 = —[I1 — 0 — '],
L

is the fraction of 91 P not common to 9, P U 93P (once retracted to P)

>0 iff Pis G-small



.3 Two Teichmiiller spaces — Combinatorial lengths

We get a homeomorphism onto its image

PR > g

In particular, we can detect which arcs are dual to edges in G
(those having non-zero coordinates in the target)

e



Cutting, twisting, gluing



1.1 Cutting, twisting, gluing — Hyperbolic geometry

e If v X isasimple closed curve such that X — ~ is stable
and o € Ts, we can cut and get ojx_, € Tx—

by taking o-geodesic representatives

o If ¥'isa surface (possibly disconnected) with a choice of
two boundaries 04%" and points px € 91%" and T € R

and o € Tsr assigning equal length to 0,.%'
we can twist by 7, glue (0_X',pT) to (0+%,pl)

and uniformize the metric to get o, € Ts




1.1 Cutting, twisting, gluing — Hyperbolic geometry

Fenchel-Nielsen coordinates

Take a pair of pants decomposition

Pr,...,Pyy_21n equipped with seams

interior curves Vi.-.., 739 310

Ts(L)

— (R_|_ X R)39—3—|—n
g +——

(Lo (i), T(,(%))?iz?ﬂrn is a diffeomorphism

7,(7) € R measures the offset of a seam « crossing v

023

compared to the geodesics between the boundary Z N/’
it connects in the two adjacent hyperbolic pair of pants
Y2 ' Y2



II.2 Cutting, twisting, gluing — Combinatorial geometry

If v is a simple closed curve, we can cut G € T<°™" along v

- b
and obtain Gx_, € T52

boundary

boundary

Z

boundary

S

TN

boundary

regular leaves




II.2 Cutting, twisting, gluing — Combinatorial geometry

If ¥'is a surface (possibly disconnected) with a choice of and G e eomb
two boundaries 91X’ and points p+ € 0. and TR '

we can defined a glued surface and Fg . € MF5. by sliding p_ of the amount 7

However, Fg» may have
saddle connections

Lemma 2 FG.r € FSomb

except for countably many 7



II.2 Cutting, twisting, gluing — Combinatorial geometry

Take a seamed pair of pants decomposition of X L 2

We have a continuous map

TSomP (L) —  (Ry x R)393+n

G —  (ls(7i), 76 (7)), L 3

(g.n) = (0,4) example

Theorem 3

This is an homeomorphism onto its image, which is open dense
with complement of zero measure

~ Combinatorial Fenchel-Nielsen coordinates



II.3 Cutting, twisting, gluing — Combinatorial (9g - 9 + 3n)

For each 7; in the pair of pants decomposition, define

0; determined by the seam

i image of §; by a positive

Dehn twist along v >
Combinatorial (9g - 9 + 3n)-theorem
9g—9+3 . . o
TSP (L)  — RS is a homeomorphism onto its image

G — (le(714), 46 (0:), La (1)),

In other words, one can express the twists
in terms of lengths of simple closed curves



II.3 Cutting, twisting, gluing — combinatorial (9g - 9 + 3n)

For each 7; in the pair of pants decomposition, define

0; determined by the seam

i image of §; by a positive
Dehn twist along i

Idea of the proof

e In(1,1): 4 cases (top cells for the pair of pants), where one checks

(0) = It +[5 -],
Un) = |r(y)+el+[5 =],
inverted as 7(7) = %(@(n) -, ) - L () - (5t ) =

e In(0,4) : 4 top cells for each pair of pants — 16 cases to discuss



Interlude —

Symplectic structure



Symplectic structure — 1. Weil-Petersson

From hyperbolic geometry, Ts(L) inherits a symplectic structure wwp (Weil-Petersson)

which is Mod{, - invariant

Wolpert's formula (83) For any seamed pair of pants decomposition
39g—3+n

WWP = Z df(’yz) /N\ dT(’}/i)

1=1

Thatis: twisting along ~; is the hamiltonian flow wrt £(v;)



Symplectic structure — 2. Kontsevich

1
. comb _ = /
Kontsevich 2-form on 75°"°(L) WK = 5 ; Z/ dlé. A dY,
defined on cells, Mod% - invariant R
Lemma (Kontsevich, 91) WK is non-degenerate on cells corresponding to

ribbon graphs with vertices of odd valency only

Introduced by Kontsevich in his proof of Witten’s conjecture
1- VLER? Mgy, = MP™P(L)
Nds

2 - VKL::/ “K :/ ex< L%)
5 (L) Mo (1) ds.| o p Z (%

3 - matrix model representation ~~ KdV hierarchy and Virasoro constraints




Symplectic structure — 2. Kontsevich

Theorem 4 For any seamed pair of pants decomposition, in each open cell
3g—3+n
wrg =y dfAdr
i=1

~» combinatorial analog of Wolpert's formula (83)
for Weil-Petersson symplectic form wrt. hyperbolic length/twists

Idea of the proof

Compute the vector field 9, in terms of edge lengths along 7:i (sliding)

Check it is the hamiltonian vector field for ¢;



T=(L) T (L)

coincide as topological spaces, but carry different geometry

{hyperbolic metrics} subset of {measured foliations}
= {marked Riemann surfaces} = {marked metric ribbon graphs}
smooth manifold polytopal complex
hyperbolic length functions combinatorial length functions
(9g - 9 + 3n) embedding theorem (99 - 9 + 3n) embedding theorem
hyperbolic Fenchel-Nielsen combinatorial Fenchel-Nielsen
Darboux coords. for WWP Darboux coords. for WK
full image in (R x R)3973%" image = (Ry x R)?75F"\ Z




Flowing from hyperbolic to combinatorial



The spine of a hyperbolic metric o is the locus of points in X

equidistant from two boundaries

Lemma (Luo 07, Mondello 09)

sp: T — 7§°mb

- Mod?. - L .
o — sp. (%) is a Mody, -equivariant homeomorphism

The inverse is poorly understood ...

Measured foliation

—— geodesics realising the equidistance

—— ribs (singular leaves) \ /
/

Spine
— with metric: 4y, (e) = {5 (€’)



lll.2 Flowing from hyperbolic to combinatorial — Convergence

Combinatorial geometry is hyperbolic geometry with large boundary lengths

Bowditch-Epstein flow (88)

Sp .
o Te(L) . oMb (L)
b P8 rescaling all edge The map pp is not explicit ...
B lengths by 3
B comb
of Te(Bn) o D

Theorem (Mondello 09, Do 10) When B — o0

As metric spaces (2, B~ loP) — sp(o) in Gromov-Hausdorff sense

Vo € S B0 _, (v) — Usp(o) (v)  pointwise for o € Tx(L)

Poisson structure ﬁngﬂwp — Tk pointwise in 735" (L)



lll.2 Flowing from hyperbolic to combinatorial — Convergence

Lemma 5

Forany e >0, thereis C.,, > 0 such that for 8> B¢ 4n

for any simple closed curve v and G € T5°™P with sysg > €

los(7)
5 =+ Ce,g,n

Los (7)
p

</lg(y) <

where o =sp }(G)

Idea of the proof

e (Do, 10) Upper bound OK, and lower bound

0.5(7) rs rg = maxd,s ((’92, V(sp(a)))
5 B E(v) = {edges along 7}

< ls(v) + 2|E(7)]

e No cycle shorterthan e = |E(v)| < cts(7)
€

¢ Area bound injrad_ s = max (%sysag,sup d,s (q,ﬁZ)) <
qEe>

o sys,s > e from upper bound, hence 73 < ¢ for 8 large enough




lll.2 Flowing from hyperbolic to combinatorial — Convergence

Proposition 6

For each seamed pair of pants decomposition and compact K C Tx5o™P

there exists C% > 0 such that, for 5 > Bk

Ck

ToB (%) B TG(%:) < 3 where o =sp (G)

B

\%

ldea of the proof

e Use hyp. (9g - 9 + 3n)-theorem to write 7,5 (;) in terms of hyp. lengths for o
e Prove commensurable upper and lower bounds in terms of comb. lengths for G

e Use comb. (9g - 9 + 3n)-theorem in reverse to write bounds solely with 76(7;)



IV

Changing pairs of pants



IV Changing pairs of pants

o Fenchel-Nielsen coords. depend on a choice of a (seamed) pair of pants decompositions

e Any two pair of pants decompositions are related by a finite sequence of flips
acting on two adjacent pairs of pants or on a one-holed torus

(Hatcher, Thurston)




IV.1 Changing pairs of pants — Hyperbolic geometry

To compute the effect of a flip, one can exploit a third description :

o Tu(L) isa component of {p € Hom(m (%), PSLy(R)) | p(8:%) ~ diag(e”/?, e %i/2)} /PSLy(R)

using that Isom(H) = PSLy(R) (and wwe is Goldman’s symplectic form)

e The length of 7 € Sx is given by 2cosh(£"27)) = Tr p(v)

L

Okai's formulae (92)

)
o
N
=
| 3
|
)
o
N
=

cosh2 cosh( ) + cosh(¢)) — 2 sinh” (£
(:osh2 (

)
cosh ) + cosh(¢)) + sinh*(£) (cosh(%) — 1)




IV.2 Changing pairs of pants — Combinatorial geometry

e We do not currently have a analog representation for 75°™" (L)

in terms of Aff(R?) = Isom(R?)

e Itis not easy to obtain the effect of the flips on combinatorial Fenchel-Nielsen
by direct computation (many cells to discuss ...)

p

e Butwe can use the flow o S — oo and the convergence results to get it

Example: flip in torus L . L

[ cosh?(£) = 0(3) \/ cosh(5) + cosh(/)
2 sinh(g) 2 /- |7_| 4 [L B 4
< cosh(T_') — Cosh(ﬁ)\/ cosh2(%) (cosh(%) + Cosh(é)) _ QSinh2 %) _ L N
2 2\ costi? (3) (cosh() + cosh(6)) -+ sinl®(5) (cosh(£) — 1) | = —sgn(r)|e - [& - ¢, ]
| sen(r’) = —sgn(7)

hyperbolic combinatorial



IV.2 Changing pairs of pants — Combinatorial geometry

What remains of the smooth structure of 7 (8L) when  — oo
Corollary 7

TSP (L) admits a piecewise linear structure (given by comb. FN coordinates)

The transition functions are a kind of tropicalisation of Okai's formulae ...

This is not implied by the “polytopal complex” structure



T=(L)
coincide as topological spaces,

flo

{hyperbolic metrics}
= {marked Riemann surfaces}

smooth manifold

\

hyperbolic length functions
(9g - 9 + 3n) embedding theorem

hyperbolic Fenchel-Nielsen

Darboux coords. for wwp

full image in (R x R)3973%"

TS (L)
but carry different geometry
W
— subset of {measured foliations}
= {marked metric ribbon graphs}
polytopal complex

—— piecewise linear structure

combinatorial length functions

(99 - 9 + 3n) embedding theorem

combinatorial Fenchel-Nielsen

Darboux coords. for wk

image = (R x R)%9751"\ 7




Thavk vou tov vour attention

Next week

Applications to
- volumes (WP or K) of moduli spaces
- volumes in the space of measured foliations

and comparison between behavior/proofs in hyperbolic and combinatorial geom.



