\mathcal{W}_{∞} and integrability

Tomáš Procházka

Arnold Sommerfeld Center for Theoretical Physics (LMU Munich) Institute of Physics (AS CR Prague)

February 2, 2021

What are W-algebras?

- ugly cousins of Virasoro algebra
- very natural generalization of Virasoro algebra
- rich algebraic structure and representation theory
- appear in many areas of mathematical physics
- they have very different descriptions,
e.g. VOA description (CFT) vs Yangian description (integrability)
- in certain sense one particular example is a continuation of harmonic oscillator $\rightsquigarrow 2 d$ chiral free boson $\rightsquigarrow \mathcal{W}_{1+\infty}$ (natural numbers \rightsquigarrow partitions $\rightsquigarrow 3 \mathrm{~d} /$ plane partitions partitions)

Examples of areas where W -algebras show up:

- integrable hierarchies of PDE $(\mathrm{KdV} / \mathrm{KP}) \rightsquigarrow \mathcal{W}$ is quant. KP
- (old) matrix models
- quantum Hall effect
- topological strings
- $4 \mathrm{~d} \mathcal{N}=2$ instanton partition functions (AGT 2009)
- $A d S_{3} / C F T_{2}$ with higher spins (Gaberdiel/Gopakumar 2010)
- 4d $\mathcal{N}=2$ SCFTs (BLLPRvR 2013)
- twisted M-theory (Costello 2016)
- KW-twisted $\mathcal{N}=4$ SYM at junction of three codimension 1 defects (Gaiotto, Rapčák 2017)
- mathematics: geometric representation theory (equivariant cohomology of various moduli spaces)

Zamolodchikov \mathcal{W}_{3} algebra

\mathcal{W}_{3} algebra constructed by Zamolodchikov (1984) has a stress-energy tensor (Virasoro algebra) with OPE

$$
T(z) T(w) \sim \frac{c / 2}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial T(w)}{z-w}+r e g .
$$

and additional spin 3 primary field $W(w)$

$$
T(z) W(w) \sim \frac{3 W(w)}{(z-w)^{2}}+\frac{\partial W(w)}{z-w}+r e g .
$$

To close the algebra we need to find the OPE of W with itself consistent with associativity (Jacobi, crossing symmetry...).

The result:

$$
\begin{aligned}
W(z) W(w) \sim & \frac{c / 3}{(z-w)^{6}}+\frac{2 T(w)}{(z-w)^{4}}+\frac{\partial T(w)}{(z-w)^{3}} \\
& +\frac{1}{(z-w)^{2}}\left(\frac{32}{5 c+22} \Lambda(w)+\frac{3}{10} \partial^{2} T(w)\right) \\
& +\frac{1}{z-w}\left(\frac{16}{5 c+22} \partial \Lambda(w)+\frac{1}{15} \partial^{3} T(w)\right)+r e g .
\end{aligned}
$$

Λ is a quasiprimary 'composite' (spin 4) field,

$$
\Lambda(z)=(T T)(z)-\frac{3}{10} \partial^{2} T(z)
$$

The algebra is non-linear \rightsquigarrow not a Lie algebra in the usual sense

- the representation theory significantly simplifies if one studies families of algebras rather than isolated algebras
- one such family are the algebras $W_{N}[c]$ which are generated by spins $2,3, \ldots, N$ [cousins of Virasoro algebra]
- there are various ways of constructing algebras of this family:
(1) direct OPE bootstrap (at lower N)
(2) Drinfeld-Sokolov reduction (Hamiltonian reduction from affine Lie algebra $\widehat{\mathfrak{s l}}(N)$, either classical or quantum BRST)
(3) Goddard-Kent-Olive coset construction

$$
\frac{\mathfrak{s u}(n)_{k} \times \mathfrak{s u}(n)_{1}}{\mathfrak{s u}(n)_{k+1}} \simeq \frac{\mathfrak{u}(k+1)_{n}}{\mathfrak{u}(k)_{n} \times \mathfrak{u}(1)}
$$

(9) free field representations (Miura transformation) - more later

But the OPEs are still not very encouraging:

$$
\begin{aligned}
U_{3}(z) U_{4}(w) \sim & \frac{1}{(z-w)^{7}}\left(\frac{1}{2} \alpha(n-3)(n-2)(n-1) n\left(4 \alpha^{2}\left(\alpha^{2}(n(5 n-9)+1)-3 n+4\right)+1\right) \mathbb{1}\right) \\
& +\frac{1}{(z-w)^{6}}\left(\frac{1}{6}(n-3)(n-2)(n-1)\left(6 \alpha^{4} n(2 n-3)+\alpha^{2}(10-9 n)+1\right) U_{1}(w)\right) \\
& +\frac{1}{(z-w)^{5}}\left(-\alpha(n-3)(n-2)(n-1)\left(-4 \alpha^{2}+3 \alpha^{2} n-1\right)\left(U_{1} U_{1}\right)(w)\right. \\
& +\alpha(n-3)(n-2)\left(4 \alpha^{2} n^{2}-4 \alpha^{2} n-n-2\right) U_{2}(w) \\
& \left.-\frac{1}{2} \alpha^{2}(n-3)(n-2)(n-1)\left(4 \alpha^{2} n(2 n-3)-3 n+2\right) U_{1}^{\prime}(w)\right) \\
& +\frac{1}{(z-w)^{4}}\left(-\alpha(n-3)(n-2)(n-1)\left(\alpha^{2}(3 n-4)-1\right)\left(U_{1}^{\prime} U_{1}\right)(w)\right. \\
& -\frac{1}{2}(n-3)(n-2)\left(2 \alpha^{2}(n-1)-1\right)\left(U_{1} U_{2}\right)(w) \\
& +(n-3)\left(\alpha^{2}\left(n^{2}+2\right)-3\right) U_{3}(w) \\
& -\frac{1}{4} \alpha^{2}(n-3)(n-2)(n-1)\left(4 \alpha^{2} n(2 n-3)-3 n+2\right) U_{1}^{\prime \prime}(w) \\
& \left.+\alpha(n-3)(n-2)\left(\alpha^{2}(n-1) n-1\right) U_{2}^{\prime}(w)\right) \\
& +\cdots
\end{aligned}
$$

Gaberdiel/Gopakumar triality

- one can make one step further and consider algebra \mathcal{W}_{∞} generated by currents of spin $2,3, \ldots$ [or $\mathcal{W}_{1+\infty}$ if we include spin 1]
- the resulting algebra depends rationally on two parameters, $\mathcal{W}_{\infty}[c, \lambda] \quad c, \lambda \in \mathbb{C}$ (GG, Linshaw)
- this is analogous to the higher spin / fuzzy sphere algebra

$$
\frac{\mathcal{U}(\mathfrak{s o}(3))}{\left\langle X^{2}+Y^{2}+Z^{2}-\left(\lambda^{2}-1\right)\right\rangle}
$$

interpolating between all algebras of $N \times N$ matrices

- to get $W_{N}[c]$ from $\mathcal{W}_{\infty}[c, \lambda]$ we put $\lambda=N \in \mathbb{N}$ and quotient out the ideal generated by spins $N+1$ and higher
- an important observation (Gabediel/Gopakumar): given c and λ, we can actually find two other values of λ with identical OPEs, $\mathcal{W}_{\infty}\left[c, \lambda_{1}\right] \simeq \mathcal{W}_{\infty}\left[c, \lambda_{2}\right] \simeq \mathcal{W}_{\infty}\left[c, \lambda_{3}\right]$

$$
\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}=0, \quad c=\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)\left(\lambda_{3}-1\right)
$$

- this redundant parametrization manifests the triality symmetry \mathcal{S}_{3} permuting λ_{j}
- this discrete symmetry controls many aspects of representation theory of \mathcal{W}_{∞}
- e.g. MacMahon function as vacuum character of the algebra (enumerating all local fields in the algebra)

$$
\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)^{n}}=1+q+3 q^{2}+6 q^{3}+13 q^{4}+24 q^{5}+48 q^{6}+\cdots
$$

- The same generating function is well-known to count the plane partitions (3d Young diagrams)

- triality acts by permuting the coordinate axes
- restriction to \mathcal{W}_{N} corresponds to max N boxes in one of the directions (the simplest truncations of \mathcal{W}_{∞})
- the box counting can be generalized to degenerate primaries (not only vacuum rep) by allowing 2d Young diagram asymptotics

- counting exactly as in topological vertex \rightsquigarrow topological vertex can be interpreted as being a character of (maximally) degenerate $\mathcal{W}_{1+\infty}$ representations

Truncations, minimal models

- for $\lambda_{3}=N$ we have $\mathcal{W}_{\infty} \rightarrow \mathcal{W}_{N}$ (i.e. $\lambda_{3}=2$ is Virasoro)
- more general truncations: the vacuum rep has a singular vector at level $\left(N_{1}+1\right)\left(N_{2}+1\right)\left(N_{3}+1\right)$ if

$$
\frac{N_{1}}{\lambda_{1}}+\frac{N_{2}}{\lambda_{2}}+\frac{N_{3}}{\lambda_{3}}=1
$$

- imposing 2 conditions: minimal models

- example: $Y_{k, k+1,0}$ gives k-th unitary minimal models of \mathcal{W}_{N}

Brane construction (Gaiotto-Rapčák)

simple truncations of $\mathcal{W}_{\infty}-Y_{N_{1} N_{2} N_{3}}$ algebras

$$
\times \underset{x_{0}, x_{1}}{C} \quad \times \underset{x_{7}, x_{8}, x_{9}}{R^{3}}
$$

$(0,1)$ NS5
$Y_{L M N}[\Psi]=\frac{W_{N-M}^{D S}\left[U(N \mid L)_{\Psi}\right]}{U(M \mid L)_{\Psi-1}} \quad$ LD3 $\frac{N D 3}{M \text { D3 }}(1,0)$ D5
$(1,1)$

- the combinatorics of box counting generalizes also to double truncations (minimal models) - periodic plane partitions / tilings of cylinder
- example: Ising model $c=\frac{1}{2}$ has $\lambda=\left(2, \frac{2}{3},-\frac{1}{2}\right)$ and is $Y_{002} \cap Y_{210}$

- adding boxes to this configuration (respecting periodicity) reproduces all characters of W_{N} minimal models (these are usually written as sums of affine Weyl groups / theta functions...)

Yangian of $\mathfrak{g l (1)}$

The Yangian of $\widehat{\mathfrak{g l}(1)}$ (Arbesfeld-Schiffmann-Tsymbaliuk) is an associative algebra with generators $\psi_{j}, e_{j}, f_{j}, j \geq 0$ and relations

$$
\begin{aligned}
0= & {\left[e_{j+3}, e_{k}\right]-3\left[e_{j+2}, e_{k+1}\right]+3\left[e_{j+1}, e_{k+2}\right]-\left[e_{j}, e_{k+3}\right] } \\
& +\sigma_{2}\left[e_{j+1}, e_{k}\right]-\sigma_{2}\left[e_{j}, e_{k+1}\right]-\sigma_{3}\left\{e_{j}, e_{k}\right\} \\
0= & {\left[f_{j+3}, f_{k}\right]-3\left[f_{j+2}, f_{k+1}\right]+3\left[f_{j+1}, f_{k+2}\right]-\left[f_{j}, f_{k+3}\right] } \\
& +\sigma_{2}\left[f_{j+1}, f_{k}\right]-\sigma_{2}\left[f_{j}, f_{k+1}\right]+\sigma_{3}\left\{f_{j}, f_{k}\right\} \\
0= & {\left[\psi_{j+3}, e_{k}\right]-3\left[\psi_{j+2}, e_{k+1}\right]+3\left[\psi_{j+1}, e_{k+2}\right]-\left[\psi_{j}, e_{k+3}\right] } \\
& +\sigma_{2}\left[\psi_{j+1}, e_{k}\right]-\sigma_{2}\left[\psi_{j}, e_{k+1}\right]-\sigma_{3}\left\{\psi_{j}, e_{k}\right\} \\
0= & {\left[\psi_{j+3}, f_{k}\right]-3\left[\psi_{j+2}, f_{k+1}\right]+3\left[\psi_{j+1}, f_{k+2}\right]-\left[\psi_{j}, f_{k+3}\right] } \\
& +\sigma_{2}\left[\psi_{j+1}, f_{k}\right]-\sigma_{2}\left[\psi_{j}, f_{k+1}\right]+\sigma_{3}\left\{\psi_{j}, f_{k}\right\} \\
0= & {\left[\psi_{j}, \psi_{k}\right] } \\
\psi_{j+k}= & {\left[e_{j}, f_{k}\right] }
\end{aligned}
$$

'initial/boundary conditions'

$$
\begin{array}{lll}
{\left[\psi_{0}, e_{j}\right]=0,} & {\left[\psi_{1}, e_{j}\right]=0,} & {\left[\psi_{2}, e_{j}\right]=2 e_{j}} \\
{\left[\psi_{0}, f_{j}\right]=0,} & {\left[\psi_{1}, f_{j}\right]=0,} & {\left[\psi_{2}, f_{j}\right]=-2 f_{j}}
\end{array}
$$

and finally the Serre relations

$$
0=\operatorname{Sym}_{\left(j_{1}, j_{2}, j_{3}\right)}\left[e_{j_{1}},\left[e_{j_{2}}, e_{j_{3}+1}\right]\right], \quad 0=\operatorname{Sym}_{\left(j_{1}, j_{2}, j_{3}\right)}\left[f_{j_{1}},\left[f_{j_{2}}, f_{j_{3}+1}\right]\right] .
$$

Parameters $h_{1}, h_{2}, h_{3} \in \mathbb{C}$ constrained by $h_{1}+h_{2}+h_{3}=0$ and

$$
\begin{aligned}
\sigma_{2} & =h_{1} h_{2}+h_{1} h_{3}+h_{2} h_{3} \\
\sigma_{3} & =h_{1} h_{2} h_{3} .
\end{aligned}
$$

We have both commutators and anticommutators in defining quadratic relations (but no \mathbb{Z}_{2} grading) - for $\sigma_{3} \neq 0$ not a Lie (super)-algebra.

Introducing generating functions

$$
e(u)=\sum_{j=0}^{\infty} \frac{e_{j}}{u^{j+1}}, \quad f(u)=\sum_{j=0}^{\infty} \frac{f_{j}}{u^{j+1}}, \quad \psi(u)=1+\sigma_{3} \sum_{j=0}^{\infty} \frac{\psi_{j}}{u^{j+1}}
$$

the first set of formulas above (almost) simplify to

$$
\begin{aligned}
e(u) e(v) & =\varphi(u-v) e(v) e(u), & f(u) f(v) & =\varphi(v-u) f(v) f(u), \\
\psi(u) e(v) & =\varphi(u-v) e(v) \psi(u), & \psi(u) f(v) & =\varphi(v-u) f(v) \psi(u)
\end{aligned}
$$

with rational structure function (scattering phase in BAE)

$$
\varphi(u)=\frac{\left(u+h_{1}\right)\left(u+h_{2}\right)\left(u+h_{3}\right)}{\left(u-h_{1}\right)\left(u-h_{2}\right)\left(u-h_{3}\right)}
$$

The representation theory of the algebra is much simpler in this Yangian formulation and it is controlled by this single function
the generating functions $\psi(u), e(u)$ and $f(u)$ typically act as

$$
\begin{aligned}
\psi(u)|\Lambda\rangle & =\psi_{0}(u) \prod_{\square \in \Lambda} \varphi\left(u-h_{\square}\right)|\Lambda\rangle \\
e(u)|\Lambda\rangle & =\sum_{\square \in \Lambda^{+}} \frac{E(\Lambda \rightarrow \Lambda+\square)}{u-h_{\square}}|\Lambda+\square\rangle
\end{aligned}
$$

where the states $|\Lambda\rangle$ are associated to geometric configurations of boxes (plane partitions,...) and where $h_{\square}=\sum_{j} h_{j} x_{j}(\square)$ is the weighted geometric position of the box.

Two different descriptions of the algebra:

- usual CFT point of view with local fields $J(z), T(z), W(z), \ldots$ with increasingly complicated OPE as we go to higher spins
- Yangian point of view (Arbesfeld-Schiffmann-Tsymbaliuk) where all the spins are included in the generating functions $\psi(u), e(u)$ and $f(u)$ but accessing higher mode numbers is difficult

mode (CFT)

How to connect these two descriptions?

- the parameters can be identified as $\lambda_{j} \sim \frac{1}{h_{j}}$
- the generators with low spin and mode can be identified

$$
\begin{gathered}
\psi_{2}=2 L_{0}, \quad e_{0}=J_{-1}, \quad f_{0}=-J_{+1} \\
\psi_{3}=\left(W_{3}+\ldots\right)_{0}+\sigma_{3} \sum_{m>0}(3 m-1) J_{-m} J_{m}
\end{gathered}
$$

(cut \& join operator, not a zero mode of a local field, Hilbert transform \rightsquigarrow Benjamin-Ono equation)

- this is sufficient to find the map spin by spin, but what is the more conceptual way to understand the map?
- Negut: closed form of the map $\mathcal{W} \rightarrow \mathcal{Y}$ using shuffle algebra

Miura operator

very powerful (free field rep, coproduct, integrability)

- consider the following factorization of N-th order differential operator

$$
\left(\partial+\partial \phi_{1}(z)\right) \cdots\left(\partial+\partial \phi_{N}(z)\right)=\sum_{j=0}^{N} U_{j}(z) \partial^{N-j}
$$

with N commuting free fields $\partial \phi_{j}(z) \partial \phi_{k}(w) \sim \delta_{j k}(z-w)^{-2}$

- OPEs of U_{j} generate \mathcal{W}_{N} and furthermore are quadratic \rightsquigarrow free field representations of \mathcal{W}_{∞}
- $\mathcal{W}_{N} \leftrightarrow$ quantization of the space of N-th order differential operators as Hamiltonian system ($K d V_{N}$ and $K P$ hierarchies)

Miura transformation and \mathcal{R}-matrix

- the embedding of \mathcal{W}_{N} in the bosonic Fock space $\mathcal{F}^{\otimes N}$ depends on the way we order the fields
- \mathcal{R}-matrix as transformation (intertwiner) between two embeddings, $\mathcal{R}: \mathcal{F}^{\otimes 2} \rightarrow \mathcal{F}^{\otimes 2}$

$$
\left(\partial+\partial \phi_{1}\right)\left(\partial+\partial \phi_{2}\right)=\mathcal{R}^{-1}\left(\partial+\partial \phi_{2}\right)\left(\partial+\partial \phi_{1}\right) \mathcal{R}
$$

- actually have three different elementary Miura corresponding to three different asymptotics, always of the dressing form

$$
(\partial+\partial \phi(z))=e^{-\phi(z)} \partial^{\#} e^{\phi(z)}
$$

- \mathcal{R} defined in this way satisfies the Yang-Baxter equation (two ways of reordering $321 \rightarrow 123$)

$$
\begin{aligned}
& \mathcal{R}_{12}\left(u_{1}-u_{2}\right) \mathcal{R}_{13}\left(u_{1}-u_{3}\right) \mathcal{R}_{23}\left(u_{2}-u_{3}\right)= \\
& \quad=\mathcal{R}_{23}\left(u_{2}-u_{3}\right) \mathcal{R}_{13}\left(u_{1}-u_{3}\right) \mathcal{R}_{12}\left(u_{1}-u_{2}\right)
\end{aligned}
$$

- the spectral parameter u - the global $U(1)$ charge
- \mathcal{R}-matrix satisfying YBE \rightsquigarrow apply the algebraic Bethe ansatz

$$
W_{5}
$$

- spin chain of length $N \rightsquigarrow \mathcal{W}_{N}$ algebra (level N Yangian)
- consider an auxiliary Fock space \mathcal{F}_{A} and a quantum space $\mathcal{F}_{Q} \equiv \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{N}$
- we associate to this the monodromy matrix $\mathcal{T}_{A Q}: \mathcal{F}_{A} \otimes \mathcal{F}_{Q} \rightarrow \mathcal{F}_{A} \otimes \mathcal{F}_{Q}$ defined as

$$
\mathcal{T}_{A Q}=\mathcal{R}_{A 1} \mathcal{R}_{A 2} \cdots \mathcal{R}_{A N}
$$

- if the individual \mathcal{R}-matrices satisfies the $\mathrm{YBE}, \mathcal{T}$ will also satisfy YBE with respect to two auxiliary spaces A and B

$$
\mathcal{R}_{A B} \mathcal{T}_{A} \mathcal{T}_{B}=\mathcal{T}_{B} \mathcal{T}_{A} \mathcal{R}_{A B}
$$

- the algebra of matrix elements of \mathcal{T} satisfying this equation is the Yangian (in RTT presentation)
- in our situation the Fock-Fock \mathcal{R}-matrix controlling the commutation relations of Yangian has rows and columns labeled by Young diagrams (\rightsquigarrow infinite number of generators)
- we can however restrict to simple matrix elements, i.e. upper left corner of the \mathcal{R}-matrix

$$
\mathcal{H}=\left\langle\left. 0\right|_{A} \mathcal{T} \mid 0\right\rangle_{A}, \quad \mathcal{E}=\left\langle\left. 0\right|_{A} \mathcal{T} \mid 1\right\rangle_{A}, \quad \mathcal{F}=\left\langle\left. 1\right|_{A} \mathcal{T} \mid 0\right\rangle_{A}
$$

- the YBE now implies relations between these operators like

$$
0=[\mathcal{H}(u), \mathcal{H}(v)]
$$

(infinite set of commuting Hamiltonians) or

$$
\left(u-v+h_{3}\right) \mathcal{H}(u) \mathcal{E}(v)=(u-v) \mathcal{E}(v) \mathcal{H}(u)+h_{3} \mathcal{H}(v) \mathcal{E}(u)
$$

(ladder operators)

- these generating functions can be related to AST Yangian

$$
\begin{aligned}
\psi(u) & =\frac{u+\sigma_{3} \psi_{0}}{u} \frac{\mathcal{H}\left(u+h_{1}\right) \mathcal{H}\left(u+h_{2}\right)}{\mathcal{H}(u) \mathcal{H}\left(u+h_{1}+h_{2}\right)} \\
e(u) & =h_{3}^{-1} \mathcal{H}(u)^{-1} \mathcal{E}(u) \\
f(u) & =-h_{3}^{-1} \mathcal{F}(u) \mathcal{H}(u)^{-1}
\end{aligned}
$$

- using \mathcal{R}-matrix one can find these Yangian generators systematically following the algorithm of QISM (the only input is the Miura operator $\partial+J(z)$)

Generalizations

- gluing: generalizations to more complicated VOAs obtained by gluing \mathcal{W}_{∞} as basic building block as in topological vertex formalism for toric Calabi-Yaus; this is particularly natural from Gaiotto-Rapcak point of view (TP \& Rapcak)

$$
\mathcal{N}=2 \mathrm{SCA}
$$

BershadskyPolyakov $W_{3}^{(2)}$

$\widehat{\mathfrak{g l}}(3)$

- matrix \mathcal{W}_{∞} : many properties are unchanged if we replace $\widehat{\mathfrak{g l}}(1) \rightsquigarrow \widehat{\mathfrak{g l}}(M)$ (Eberhardt \& TP), is there higher integrability such as Zamolodchikov's tetrahedron equation?
- Grassmannians: there exists three (conjecturally four) parametric generalization of \mathcal{W}_{∞} that allows construction of even larger class of VOAs including the unitary Grassmannians, Lagrangian (ortho-unitary) Grassmannians, $\mathcal{N}=4$ SCA, $\mathfrak{d}(2,1, \alpha)$ and conjecturally has pentality symmetry \mathcal{S}_{5} (Eberhardt \& TP)

Questions

Many possible directions (work in progress...)

- Bethe equations (BLZ, Litvinov), interpolating classes of commuting ILW Hamiltonians (Yangian-local BLZ)
- elliptic Calogero-Moser models and modularity
- ODE/IM correspondence, quantum spectral curve and WKB, B-model of topological string, topological recursion
- construction of the 4-parametric Grassmannian algebra, maybe ODE/IM can give hints
- string or SYM realizations - M-theory interpretation of many elements (Gaiotto-Rapcak), can this lead to some interesting predictions not expected from CFT/integrability point of view?

Thank you!

How does the \mathcal{R}-matrix look like?

- a fermionic form obtained by A. Smirnov by studying the large N limit of $\mathfrak{g l}(N) \mathcal{R}$-matrix - complicated
- a bosonic formula is not known so far, but results of Nazarov-Sklyanin can be interpreted as matrix elements of \mathcal{R}-matrix in mixed representation where the two bosonic Fock spaces are associated to different asymptotic directions

$$
\begin{gathered}
\mathcal{R}(u)=\mathbb{1}-\frac{1}{u} \sum_{j>0} a_{-j} a_{j}+\frac{1}{2!u(u+1)} \sum_{j, k>0}\left(a_{-j} a_{-k}+a_{-j-k}\right)\left(a_{j} a_{k}+a_{j+k}\right) \\
-\frac{1}{3!u(u+1)(u+2)} \sum_{j, k, l>0}\left(a_{-j} a_{-k} a_{-I}+a_{-j-k} a_{-I}+a_{-j-I} a_{-k}\right. \\
\left.+a_{-k-I} a_{-j}+2 a_{-j-k-I}\right)(\ldots)+\ldots
\end{gathered}
$$

with $a_{j} \equiv a_{j}^{(1)}-a_{j}^{(2)}$.

Truncations and conjectural 4-parametric algebra

The truncation curves are best parametrized if we introduce additional two parameters $\nu_{4}=1$ and $\nu_{5}=-1$. The central charge becomes

$$
c=\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)\left(\lambda_{3}-1\right)\left(\lambda_{4}-1\right)\left(\lambda_{5}-1\right)
$$

where $\lambda_{j}=\left(\nu_{1}+\nu_{2}+\nu_{3}+\nu_{4}+\nu_{5}\right) / \nu_{j}$ and so

$$
\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}+\frac{1}{\lambda_{4}}+\frac{1}{\lambda_{5}}=1
$$

We find a truncation at level

$$
\left(N_{1}+1\right)\left(N_{2}+1\right)\left(N_{3}+1\right)\left(N_{4}+1\right)\left(N_{5}+1\right)
$$

if the parameters λ_{j} satisfy

$$
\frac{N_{1}}{\lambda_{1}}+\frac{N_{2}}{\lambda_{2}}+\frac{N_{3}}{\lambda_{3}}+\frac{N_{4}}{\lambda_{4}}+\frac{N_{5}}{\lambda_{5}}=1
$$

just like in $\mathcal{W}_{1+\infty}$.

