Algebraic geometry seminar Bogota

Gaëtan Borot HU Berlin Oct. 14, 2020

- I. Introduction to Hurwitz numbers
 - representation theory of the symmetric group
 - combinatorial approach

- II. Intersection theory and topological recursion
 - simple Hurwitz numbers
 - orbifold Hurwitz numbers
 - double Hurwitz numbers

Ī

Introduction to Hurwitz numbers

I. Introduction to Hurwitz numbers — Definition

Topological branched covers $\Sigma \xrightarrow{L:1} \mathbb{S}^2$ with branchpoints $y_1, \dots, y_{k+2} \in \mathbb{S}^2$ modulo automorphisms

Iso. class of representations $\rho: \pi_1(\mathbb{S}^2 \setminus Y) \cong \langle (\gamma_i)_{i=1}^{k+2} \mid \gamma_1 \cdots \gamma_{k+2} = 1 \rangle \longrightarrow \mathfrak{S}_L$

Riemann-Hurwitz formula $\chi(\Sigma) = 2L - \sum_{j=1}^{k+2} (L - \ell(\lambda_j))$ where $C_{\lambda_j} = [\rho(\lambda_j)]$

$$\chi = 2$$

$$\lambda_1 = (4, 1, 1)$$
 $\lambda_2 = (3, 2, 1)$
 $\lambda_3 = (2, 2, 1, 1)$
 $\lambda_4 = (3, 1, 1, 1)$

I. Introduction to Hurwitz numbers — Definition

Topological branched covers $\Sigma \xrightarrow{L:1} \mathbb{S}^2$ with branchpoints $y_1, \dots, y_{k+2} \in \mathbb{S}^2$ modulo automorphisms

Iso. class of representations $\rho: \pi_1(\mathbb{S}^2 \setminus Y) \cong \langle (\gamma_i)_{i=1}^{k+2} \mid \gamma_1 \cdots \gamma_{k+2} = 1 \rangle \longrightarrow \mathfrak{S}_L$

Riemann-Hurwitz formula
$$\chi(\Sigma) = 2L - \sum_{j=1}^{k+2} (L - \ell(\lambda_j)) \quad \text{ where } \ C_{\lambda_j} = [\rho(\lambda_j)]$$

- The partition $\lambda_j \vdash L$ is the ramification profile above y_j
- If $\rho(\gamma_j)$ is a transposition, one says that y_j is a simple branchpoint
- One often considers the first (resp. last) branchpoint to be 0 (resp. ∞)

I. Introduction to Hurwitz numbers — Rep. th. of the symmetric group

 $Z(\mathbb{Q}[\mathfrak{S}_L])$ = center of the symmetric group algebra

$$\mathcal{B} := \lim_{\infty \leftarrow N} \mathbb{Q}[x_1, \dots, x_N]^{\mathfrak{S}_N} = \text{ring of symmetric functions in countably many variables}$$

$$\sim \bigcap_{\infty \leftarrow N} \mathbb{Z}(\mathfrak{O}[\infty, 1))$$

$$\cong \bigoplus_{L\geq 0} Z(\mathbb{Q}[\mathfrak{S}_L])$$

Two bases, indexed by $\lambda \vdash L$

Conjugacy classes

$$\hat{C}_{\lambda} = \sum_{\gamma \in C_{\lambda}} \gamma$$

$$\hat{C}_{\lambda_{1}} \hat{C}_{\lambda_{2}} = \sum_{\lambda_{2} \vdash L} \left| \left\{ \gamma_{1} \gamma_{2} \gamma_{3} = \text{id} \mid \gamma_{i} \in C_{\lambda_{i}} \right\} \right| \frac{C_{\lambda_{3}}}{|C_{\lambda_{3}}|}$$

power sums
$$\frac{p_{\lambda}}{L!} \longleftrightarrow \frac{C_{\lambda}}{|C_{\lambda}|}$$

Idempotents

$$\hat{\Pi}_{\lambda} = \frac{\chi_{\lambda}(\mathrm{id})}{L!} \sum_{\mu \vdash L} \chi_{\lambda}(C_{\mu}) \, \hat{C}_{\mu}$$

$$\hat{\Pi}_{\lambda}\hat{\Pi}_{\mu} = \delta_{\lambda,\mu}\hat{\Pi}_{\lambda}$$

Schur polynomials
$$\frac{s_{\lambda}}{L!} \longleftrightarrow \frac{\hat{\Pi}_{\lambda}}{\chi_{\lambda}(\mathrm{id})}$$

I. Introduction to Hurwitz numbers — Rep. th. of the symmetric group

- Jucys-Murphy elements $\hat{J}_k = \sum_{i=2}^{\kappa} (i \, k)$
 - Symmetric polynomials evaluated on $(\hat{J}_k)_{k=2}^L$ span $Z(\mathbb{Q}(\mathfrak{S}_L))$
- If r is a symmetric polynomial, one defines Hurwitz numbers in two versions

$$R_{\mu,\nu}^{\bullet} = \frac{1}{L!} \left[\mathrm{id} \right] \hat{C}_{\mu} \, r(\hat{J},0,0,\ldots) \, \hat{C}_{\nu} \quad \leadsto \quad R_{\mu,\nu}^{\circ} \quad \text{by inclusion-exclusion}$$

$$r = e^{\beta p_1}$$

$r=e^{eta p_1}$ Double Hurwitz numbers

$$R_{\mu,\nu}^{\bullet} = \frac{1}{L!} \sum_{k \geq 0} \frac{\beta^k}{k!} \sum_{\substack{\tau_1, \dots, \tau_k \text{transpositions}}} \left[\text{id} \right] \hat{C}_{\mu} \tau_1 \cdots \tau_k \hat{C}_{\nu} = \frac{1}{L!} \sum_{k \geq 0} \left| \left\{ \begin{array}{l} \gamma_0 \in C_{\mu} \\ \gamma_{\infty} \in C_{\nu} \end{array} \right. \right. \tau_i \text{ transposition} \left. \left| \gamma_0 \tau_1 \cdots \tau_k \gamma_{\infty} = \text{id} \right. \right\} \right| \cdot \frac{\beta^k}{k!}$$

is the weighted count of branched covers with ramification profile μ above 0 , ν above ∞ , k simple branchpoints

$$R_{\mu,\nu}^{\circ}$$
 counts only the connected covers k determines the genus by $2-2g=\ell(\mu)+\ell(\nu)-k$

I. Introduction to Hurwitz numbers — Rep. th. of the symmetric group

• Symmetric polynomials in Jucys Murphy act diagonally on the idempotent basis

$$r(\hat{J}, 0, 0, ...)\hat{\Pi}_{\nu} = r(\cot \nu, 0, 0, ...)\hat{\Pi}_{\nu}$$

$$\cot \nu = \{j - i \mid (i, j) = \text{box in } \nu\}$$

$$\cot \nu = \{0, 1, 2, 3, -1, 0, -2\}$$

• Cauchy identity
$$\sum_{\nu} s_{\nu} \otimes s_{\nu} = \sum_{\nu} \frac{|C_{\nu}|}{|\nu|!} p_{\nu} \otimes p_{\nu}$$

$$\sum_{\nu} r(\cot \nu) s_{\nu} \otimes s_{\nu} = \sum_{\substack{\mu,\nu \\ |\mu|=|\nu|}} R_{\mu,\nu}^{\bullet} p_{\mu} \otimes p_{\nu}$$

$$r(\hat{J},0,0,\ldots) \otimes \mathrm{id}$$

e.g.
$$p_1(\cot \nu, 0, 0, \ldots) = \sum_{i=1}^{\ell(\nu)} \sum_{j=1}^{\nu_i} (j-i) = \frac{1}{2} \sum_{i=1}^{\ell(\nu)} \left[\left(\nu_i - i + \frac{1}{2}\right)^2 - \left(-i + \frac{1}{2}\right)^2 \right] := c_2(\nu)$$

double Hurwitz numbers are encoded in the decomposition of

$$\Longrightarrow Z:=\sum_{
u}e^{eta c_2(
u)}\,s_
u\otimes s_
u$$
 on the power sum basis

for connected : $\ln Z$

I. Introduction to Hurwitz numbers — Conditioning by topology

Problem 1: compute connected Hurwitz numbers for fixed topology i.e. fixed genus g and $n=\ell(\nu)$ points above ∞

• Simple Hurwitz numbers : 0 unramified, i.e. $\mu = (1, ..., 1)$

$$H_{g,n}(\nu_1,\ldots,\nu_n) := \left[\beta^{2g-2+n+\sum_i \nu_i}\right] R_{(1,\ldots,1),\nu}^{\circ}$$

• d -orbifold Hurwitz numbers : $\mu=(d,\ldots,d)$ above 0 $H_{g,n}^{[d]}(\nu_1,\ldots,\nu_n):=\left[\beta^{2g-2+n+\sum_i\frac{\nu_i}{d}}\right]R_{(d,\ldots,d),\nu}^\circ$

ullet double Hurwitz numbers : arbitrary ramification above 0 and ∞

$$\mathbb{H}_{g,n}(\nu_1,\dots,\nu_n) = \sum_{\mu \vdash |\nu|} \left[\beta^{2g-2+n+\ell(\mu)} \right] R_{\mu,\nu}^{\circ} \, \vec{q}_{\mu} \qquad \text{where} \quad \vec{q}_{\mu} = \prod_{i=1}^{\ell(\mu)} q_{\mu_i}$$

For simple Hurwitz numbers (0 unramified), one can try elementary combinatorics Covers are in (orbifold) bijection with their **branching graph**

This is a ribbon graph with labeled edges

 $\begin{array}{c} \text{vertices} &\longleftrightarrow \text{ sheets} \\ \text{edges} \\ \text{labeled by } \llbracket 1,k \rrbracket &\longleftrightarrow \text{ simple branchpoints} \\ \text{faces} &\longleftrightarrow \text{ points above } \infty \\ \\ \frac{1}{k} \sum_{\substack{e \text{ around} \\ \text{face } f}} d_+(l_e,l_{e'}) &\longleftrightarrow \text{ multiplicity of point f} \\ &\leadsto \nu \end{array}$

(Okounkov, Pandharipande, 01)

Example

 ν

$$g = 0$$

g = 0, n = 1 face
$$\nu = (\nu_1)$$

Branched trees with ν_1 vertices \rightsquigarrow $H_{0,1}(\nu_1) = \frac{\nu_1^{\nu_1-2}}{\nu_1!}$ (Cayley 1899)

$$g = 0$$
, $n = 2$ faces

Branched graph with 1 cycle + trees $\iff H_{0,2}(\nu_1, \nu_2) = \frac{\nu_1^{\nu_1} \nu_2^{\nu_2}}{\nu_1! \nu_2! (\nu_1 + \nu_2)}$

Cut-and-join equation (Goulden, Jackson, Vakil, 99)

Recursion on the number of edges by merging a simple branchpoint to ∞

$$(2g - 2 + \ell(\nu) + |\nu|) H_{g,n}(\nu)$$

$$= \sum_{i < j} (\nu_i + \nu_j) \frac{(\nu_i + \nu_j)!}{\nu_i! \nu_j!} H_{g,n-1}(\nu \setminus \{\nu_i, \nu_j\} \sqcup (\nu_i + \nu_j))$$

$$+ \frac{1}{2} \sum_{i=1}^{\ell(\nu)} \sum_{m+m'=\nu_i} m \, m' \frac{m! m'!}{\nu_i!} \left(H_{g-1,n+1}(\nu \setminus \{\nu_i\} \sqcup m, m') + \sum_{\substack{h+h'=g\\ \lambda \sqcup \lambda' = \nu \setminus \{\nu_i\}}} H_{h,\ell(\lambda)+1}(\lambda \sqcup m) H_{g_b,\ell(\lambda')+1}(\lambda' \sqcup m') \right)$$

The cut-and-join equation determines all the $H_{g,n}(\nu)$

Problem 1': can one compute all of them for fixed (g,n) at the same time?

$$W_{g,n}(x_1,\ldots,x_n) = \sum_{\nu_1,\ldots,\nu_n>1} H_{g,n}(\nu_1,\ldots,\nu_n) \prod_{i=1}^n d(e^{\mu_i x_i})$$

We already have found

$$W_{0,1}(x_1) = \sum_{\nu_1 > 1} \frac{\nu_1^{\nu_1 - 2}}{\nu_1!} d(e^{\nu_1 x_1}) = y_1 dx_1 \qquad \text{with} \quad e^{x_i} = y_i e^{-y_i}$$

$$W_{0,2}(x_1, x_2) = \sum_{\nu_1, \nu_2 > 1} \frac{\nu_1^{\nu_1} \nu_2^{\nu_2} d(e^{\nu_1 x_1}) d(e^{\nu_2 x_2})}{\nu_1! \nu_2! (\nu_1 + \nu_2)} = \frac{dy_1 dy_2}{(y_1 - y_2)^2} - \frac{d(e^{x_1}) d(e^{x_2})}{(e^{x_1} - e^{x_2})^2}$$

Observe the role of the Lambert curve $S: e^x = ye^{-y}$

This combinatorial approach can be adapted to other Hurwitz problems but

- there are more powerful algebraic techniques doing the same
- cut-and-join does not easily give access to $\;W_{g,n}\;$ for $\;2g-2+n>0\;$

П

Intersection theory and topological recursion

Simple Hurwitz numbers from the viewpoint of algebraic geometry

 $\mathcal{H}_{g,\nu_1,\dots,\nu_n}=$ moduli space of genus g Riemann surfaces $(C,p_1,\dots,p_n,z_1,\dots,z_k)$ equipped with $\pi:C\to\mathbb{P}^1$ having poles of order ν_i at p_i such that $\mathrm{d}\pi$ has simple zeroes at z_j

where
$$k = 2g - 2 + n + \sum_{i} \nu_{i}$$

$$\Longrightarrow H_{g,n}(\nu_1,\ldots,\nu_n) = \frac{\deg \mathcal{X}}{k!}$$

After dealing with compactification, this can be computed as the total Segre class of a cone $\overline{\mathcal{H}}_{g,\nu_1,...,\nu_n}\longrightarrow \overline{\mathcal{M}}_{g,n}$

 $\overline{\mathcal{M}}_{g,n}$ = Deligne-Mumford compactification of the moduli space of curves

 $\overline{\mathcal{M}}_{q,n}$ = Deligne-Mumford compactification of the moduli space of curves

Cotangent line bundle

$$(\mathbb{L}_i)_{(C,p_1,\ldots,p_n)} = T_{p_i}^* C$$

$$\psi_i = c_1(\mathbb{L}_i) \in H^2(\overline{\mathcal{M}}_{g,n})$$

Hodge bundle

total Chern class

$$E_{(C,p_1,\ldots,p_n)} = H^0(C,\omega_C) \qquad \Longrightarrow \qquad$$

$$\Lambda^{\vee} = c(\mathbb{E}^{\vee}) = \sum_{h=0}^{g} (-1)^h \lambda_h \in H^*(\mathcal{M}_{g,n})$$

Theorem (Ekedahl, Lando, Shapiro, Vainshtein, 01)

For
$$2g-2+n>0$$

For
$$2g - 2 + n > 0$$
 $H_{g,n}(\nu_1, \dots, \nu_n) = \prod_{i=1}^n \frac{\nu_i^{\nu_i}}{\nu_i!} \int_{\overline{\mathcal{M}}_{g,n}} \frac{\Lambda^{\vee}}{\prod_{i=1}^n (1 - \nu_i \psi_i)}$

Gave some explicit evaluations of Hodge integrals ...

combinatorial prefactor

polynomial in ν_1, \ldots, ν_n

Topological recursion allows computing the generating series $W_{g,n}$ from periods on the Lambert curve $S:e^x=ye^{-y}$

Conjecture: Bouchard, Mariño conjecture 08

Theorem: Eynard, Mulase, Safnuk 11

Gromov-Witten invariants of \mathbb{C}^3 in the infinite framing limit

A

Period computations on the mirror

B

$$\mathcal{S}: e^x = ye^{-y}$$

Consequence of a more general correspondence for all toric CY3 folds

Conjecture : Bouchard, Klemm, Mariño, Pasquetti 07

Theorem: Eynard, Orantin 15 (also Fang, Liu, Zong, 16)

Topological recursion (TR)

Initial data consists of

 $\begin{cases} \mathcal{S} & \text{smooth complex curve} \\ x,y & \text{meromorphic functions} \\ B \in H^0(\mathcal{S}^2,K_{\mathcal{S}}^{\boxtimes 2}(2\Delta))^{\mathfrak{S}_2} \end{cases}$

assuming

dx has simple zeros \mathfrak{a}

y has order 1 at \mathfrak{a}

- σ_a local involution near $a \in \mathfrak{a}$ such that $x \circ \sigma_a = x$
- Recursion kernel $K(z_1,z)=rac{1}{2}\,rac{\int_{\sigma_a(z)}^z\omega_{0,2}(\cdot,z_1)}{ig(y(z)-y(\sigma_a(z))ig)\mathrm{d}x(z)}$
- TR then constructs $\omega_{0,1}=y\,\mathrm{d}x$, $\omega_{0,2}=B$ and $\omega_{g,n}\in H^0\big(\mathcal{S}^n,K_\mathcal{S}^{\boxtimes n}(*\mathfrak{a})\big)^{\mathfrak{S}_n}$ by induction on 2g-2+n>0

$$\omega_{g,n}(z_1,\ldots,z_n) = \sum_{a \in \mathfrak{a}} \operatorname{Res}_{z=a} K(z_1,z) \left(\omega_{g-1,n+1}(z,\sigma_a(z),z_2,\ldots,z_n) + \sum_{\substack{h+h'=g\\J \sqcup J'=\{z_2,\ldots,z_n\}}}^{\operatorname{no}\omega_{0,1}} \omega_{h,1+|J|}(z,J) \,\omega_{h',1+|J'|}(\sigma_a(z),J') \right)$$

Topological recursion (TR)

construct $\omega_{0,1} = y \, \mathrm{d}x$, $\omega_{0,2} = B$ and $\omega_{g,n} \in H^0 \big(\mathcal{S}^n, K_{\mathcal{S}}^{\boxtimes n} (*\mathfrak{a}) \big)^{\mathfrak{S}_n}$ by induction on 2g - 2 + n > 0, computing residues

The terms in TR are in bijection with

$$\overline{\mathcal{P}}_{\Sigma} = \left\{ P \hookrightarrow \Sigma \text{ such that } \partial_1 P = \partial_1 \Sigma \text{ and } \Sigma - P \text{ stable} \right\} / \operatorname{Diff}_{\Sigma}^{\partial}$$

 Σ = smooth surface of genus g with n labeled boundaries

P = pair of pants

Theorem (Eynard, Mulase, Safnuk, 11)

Let $\omega_{g,n}$ be the outcome of TR for

$$\mathcal{S} = \left\{ (x, y) \in \mathbb{C} \times \mathbb{C}^* \mid e^x = ye^{-y} \right\} \text{ with } B = \frac{\mathrm{d}y_1 \mathrm{d}y_2}{(y_1 - y_2)^2}$$

 $\mathfrak{a} = \{(-1,1)\}$

We have the identity of series expansion near $e^{x_i} \to 0$

$$\omega_{g,n} - \delta_{g,0}\delta_{n,2} \frac{\mathrm{d}(e^{x_1})\mathrm{d}(e^{x_2})}{(e^{x_1} - e^{x_2})^2} \sim W_{g,n}(x_1, \dots, x_n)$$

- ullet Proof by analysis of cut-and-join relations + analytic continuation to ${\mathcal S}$
- The outcome of TR can be always be represented via intersection theory on $\overline{\mathcal{M}}_{g,n}$ Eynard 11
 - algebraic/combinatorial proof of the ELSV formula (Hodge class appears by Mumford formula)

d -orbifold Hurwitz numbers : $\mu = (d, \dots, d)$ above 0

$$H_{g,n}^{[d]}(\nu_1,\ldots,\nu_n) := \left[\beta^{2g-2+n+\sum_i \frac{\nu_i}{d}}\right] R_{(d,\ldots,d),\nu}^{\circ}$$

$$W_{g,n}^{[d]}(x_1,\ldots,x_n) = \sum_{\nu_1,\ldots,\nu_n>1} H_{g,n}^{[d]}(\nu_1,\ldots,\nu_n) \prod_{i=1}^n d(e^{\nu_i x_i})$$

There is a cut-and-join equation, from which one can compute

$$W_{0,1}^{[d]}(x_1) = y_1 \, \mathrm{d}x_1$$

$$W_{0,2}^{[d]}(x_1, x_2) = \frac{\mathrm{d}z_1 \mathrm{d}z_2}{(z_1 - z_2)^2} - \frac{\mathrm{d}(e^{x_1}) \mathrm{d}(e^{x_2})}{(e^{x_1} - e^{x_2})^2}$$

$$S^{[d]} : \begin{cases} x(z) &= \ln z - z^d \\ y(z) &= z^d \end{cases}$$

From the algebraic geometry viewpoint, it can be approached via intersection theory on $\overline{\mathcal{M}}_{g,a_1,...,a_n}(B\mathbb{Z}_d)$ $a_i \in \mathbb{Z}_d$ monodromy at p_i

$$\mathbb{E}^U \longrightarrow \overline{\mathcal{M}}_{g,a_1,\dots,a_n}$$

subbundle of the Hodge bundle on which the generator of \mathbb{Z}_d acts by $e^{2\mathrm{i}\pi/d}$

$$\Lambda^{U\vee} = c(\mathbb{E}^{U\vee}) = \sum_{h=0}^{g} (-1)^k \lambda_k^U \in H^* \left(\mathcal{M}_{g,a_1,\dots,a_n}(B\mathbb{Z}_d) \right)$$

Theorem (Johnson, Pandharipande, Tseng 11)

For
$$2g - 2 + n > 0$$

$$H_{g,n}^{[d]}(\nu_1,\dots,\nu_n) = d^{2g-2+n+\sum_i \frac{\nu_i}{d}} \prod_{i=1}^n \frac{\left(\frac{\nu_i}{d}\right)^{\lfloor \frac{\nu_i}{d} \rfloor}}{\lfloor \frac{\nu_i}{d} \rfloor!} \int_{\overline{\mathcal{M}}_{g,-\overline{\nu}_1,\dots,-\overline{\nu}_n}(B\mathbb{Z}_d)} \frac{\Lambda^{U\vee i}}{\prod_{i=1}^n \left(1 - \frac{\nu_i}{d}\psi_i\right)}$$

$$-\overline{\nu_i} \in \llbracket 0, d-1
rbracket$$
 such that $-\overline{\nu_i} = -\nu_i \mod d$

combinatorial prefactor

There is an equivalent description via the moduli stacks of $\frac{s}{r}$ th roots

$$\overline{\mathcal{M}}_{g,n}^{(r,s)}(a_1,\ldots,a_n) = \overline{\left\{ (C,p_1,\ldots,p_n,L,\phi) \mid L^{\otimes r} \stackrel{\phi}{\simeq} \omega_C^{\otimes s} \left(\sum_i (s-a_i)p_i \right) \right\} / \sim}$$

$$\mathcal{L} \longrightarrow \mathcal{C} \xrightarrow{\pi} \overline{\mathcal{M}}_{g,n}^{(r,s)}(a_1, \dots, a_n) \xrightarrow{\epsilon} \overline{\mathcal{M}}_{g,n}$$

universal universal line bundle curve

¹₃ Chiodo classes

$$\Omega_{g,n}^{(r,s)}(a_1,\ldots,a_n) := \epsilon_* c(-R^* \pi_* \mathcal{L}) \in H^*(\overline{\mathcal{M}}_{g,n})$$

Theorem (Dunin-Barkowski, Lewanski, Popolitov, Shadrin 15)

$$H_{g,n}^{[d]}(\nu_1,\dots,\nu_n) = d^{2g-2+n+\sum_i \frac{\nu_i}{d}} \prod_{i=1}^n \frac{\left(\frac{\nu_i}{d}\right)^{\lfloor \frac{\nu_i}{d} \rfloor}}{\lfloor \frac{\nu_i}{d} \rfloor!} \int_{\overline{\mathcal{M}}_{g,n}} \frac{\Omega_{g,n}^{(d,d)}(-\overline{\nu}_1,\dots,-\overline{\nu}_n)}{\prod_{i=1}^n \left(1-\frac{\nu_i}{d}\psi_i\right)} - \overline{\nu}_i \in \llbracket 0,d-1 \rrbracket \quad \text{such that} \quad -\overline{\nu}_i = -\nu_i \bmod d$$
 combinatorial prefactor quasi-polynomial in ν_1,\dots,ν_n

Theorem (Do, Leigh, Norbury, 12 | Bouchard, Hernandez-Serrano, Liu, Mulase 13)

Let $\,\omega_{g,n}^{[d]}\,$ be the outcome of TR for

$$\mathcal{S}^{[d]}: \left\{ \begin{array}{ll} x(z) & = & \ln z - z^d \\ y(z) & = & z^d \end{array} \right. \text{ with } B = \frac{\mathrm{d}z_1 \mathrm{d}z_2}{(z_1 - z_2)^2} \qquad \mathfrak{a} = \left\{ z = e^{2\mathrm{i}\pi/d} d^{1/d} \mid j \in \mathbb{Z}_d \right\}$$

We have the identity of series expansion near $e^{x_i} \to 0$

$$\omega_{g,n}^{[d]} - \delta_{g,0}\delta_{n,2} \frac{\mathrm{d}(e^{x_1})\mathrm{d}(e^{x_2})}{(e^{x_1} - e^{x_2})^2} \sim W_{g,n}^{[d]}(x_1, \dots, x_n)$$

- Proof by analysis of cut-and-join relations + analytic continuation to
- The outcome of TR can be always be represented via intersection theory on $\overline{\mathcal{M}}_{g,n}$ Eynard 11
 - → algebraic/combinatorial proof of the JPT formula Dunin-Barkowski, Lewanski, Popolitov, Shadrin 15

Double Hurwitz numbers : arbitrary ramification above 0 and ∞

$$\mathbb{H}_{g,n}(\nu_1, \dots, \nu_n) = \sum_{\mu \vdash |\nu|} \left[\beta^{2g-2+n+\ell(\mu)} \right] R_{\mu,\nu}^{\circ} \vec{q}_{\mu} \quad \text{where} \qquad \vec{q}_{\mu} = \prod_{i=1}^{k(\mu)} q_{\mu_i}$$

$$\mathbb{W}_{g,n}(x_1, \dots, x_n) = \sum_{\nu_1, \dots, \nu_n \geq 1} \mathbb{H}_{g,n}(\nu_1, \dots, \nu_n) \prod_{i=1}^n d(e^{\nu_i x_i})$$

• Double Hurwitz numbers are more fundamental than the others Relate to intersection theory of the double ramification cycle which has applications to integrability, structural properties of $H^*(\overline{\mathcal{M}}_{g,n})$

Goulden, Jackson 03; Bayer, Cavalieri, Johnson, Markwig 11

There are vague conjectures about ELSV-like formulas involving unspecified moduli stacks of $\dim_{\mathbb{C}}=4g-3+n$ with a proper fibration to $\overline{\mathcal{M}}_{g,n}$ and unspecified analogs of the dual Hodge class

• There is an (elementary) cut-and-join equation, from which one can find

$$\mathbb{W}_{0,1}(x_1) = y_1 \, \mathrm{d}x_1
\mathbb{W}_{0,2}(x_1, x_2) = \frac{\mathrm{d}z_1 \, \mathrm{d}z_2}{(z_1 - z_2)^2} - \frac{\mathrm{d}(e^{x_1}) \, \mathrm{d}(e^{x_2})}{(e^{x_1} - e^{x_2})^2}$$

$$\mathcal{S}_{\mathbf{q}} : \begin{cases} x(z) &= \ln z - \sum_j q_j z^j \\ y(z) &= \sum_j q_j z^j \end{cases}$$

 $egin{aligned} \bullet & ext{When} & q_1, \dots, q_{d-1}, q_d & ext{generic} \ & q_d
eq 0 \ & q_j = 0 & ext{for} & j > d \end{aligned}$

 $\mathrm{d}x$ has $|\mathfrak{a}|=d$ simple zeros which are the roots of $\,1-\sum_{j=1}^d jq_jz^j=0\,$

can be seen as a deformation of the d-orbifold case $q_j = \delta_{j,d}$

Theorem 1 (B., Do, Karev, Lewanski, Moskowsky, 20)

For any fixed $d \ge 1$ and $q_d \ne 0$

let $\omega_{g,n}^{\mathbf{q},[d]}$ be the outcome of TR for

$$S^{\mathbf{q},[d]}: \begin{cases} x(z) &= \ln z - \sum_{j=1}^{d} q_j z^j \\ y(z) &= \sum_{j=1}^{d} q_j z^j \end{cases} \text{ with } B = \frac{\mathrm{d}z_1 \mathrm{d}z_2}{(z_1 - z_2)^2}$$

We have the identity of series expansion near $e^{x_i} \to 0$

$$\omega_{g,n}^{\mathbf{q},[d]} - \delta_{g,0}\delta_{n,2} \frac{\mathrm{d}(e^{x_1})\mathrm{d}(e^{x_2})}{(e^{x_1} - e^{x_2})^2} \sim W_{g,n}(x_1,\dots,x_n)|_{q_j=0 \ j>d}$$

Strategy of the proof

• The difficult part of the proof is to justify quasipolynomiality wrt. ν_1, \dots, ν_n

$$\mathbb{H}_{g,n}(\nu_1,\dots,\nu_n) = \sum_{\substack{1 \le a_1,\dots,a_n \le d \\ m_1,\dots,m_n > 0}} C_{g,n}(\substack{a_1 & \dots & a_n \\ m_1 & \dots & m_n}) \prod_{i=1}^n A_{\nu_i,a_i} \nu_i^{m_i}$$

$$\text{where}\quad A_{k,a} = \sum_{\lambda \vdash k-a} \frac{a\,k^{\ell(\lambda)}\,\vec{q_\lambda}}{\prod_{i=1}^{\ell(\lambda)}\lambda_i!} = [z^{k-a}]a\,e^{k\,\sum_{j=1}^d q_j z^j}$$

for some
$$C_{g,n}\left(\begin{smallmatrix} a_1 & \cdots & a_n \\ m_1 & \cdots & m_n \end{smallmatrix}\right) \in \mathbb{Q}(q_1,\ldots,q_d)$$
 vanishing for $\sum_i m_i < M_{g,n}$

Done via combinatorial analysis of the formulas in $\mathcal{B}\cong \bigoplus_{L\geq 0} Zig(\mathbb{Q}[\mathfrak{S}_L]ig)$

For the generating series, it implies the decomposition

$$\mathbb{W}_{g,n}(x_1,\dots,x_n) = \sum_{\substack{1 \le a_1,\dots,a_n \le d \\ m_1,\dots,m_n \ge 0}} C_{g,n} \begin{pmatrix} a_1 & \dots & a_n \\ m_1 & \dots & m_n \end{pmatrix} \prod_{i=1}^n \mathrm{d}\xi_{a_i,m_i} \quad \text{where} \quad \xi_{a,m} = \partial_{x(z)}^{m+1}(z^a)$$

hence it analytically continue to $(\mathcal{S}^{\mathbf{q},[d]})^n$ with poles at $z_i o \mathfrak{a}$

For the generating series, it implies the decomposition

$$\mathbb{W}_{g,n}(x_1,\dots,x_n) = \sum_{\substack{1 \le a_1,\dots,a_n \le d \\ m_1,\dots,m_n > 0}} C_{g,n} \begin{pmatrix} a_1 & \dots & a_n \\ m_1 & \dots & m_n \end{pmatrix} \prod_{i=1}^n \mathrm{d}\xi_{a_i,m_i} \quad \text{where} \quad \xi_{a,m} = \partial_{x(z)}^{m+1}(z^a)$$

hence it analytically continue to $(\mathcal{S}^{\mathbf{q},[d]})^n$ with poles at $z_i o \mathfrak{a}$

- Then, we can use analytic continuation in the cut-and-join equations and combinatorial analysis similar to the simple or orbifold proofs
 - \leadsto get a recursion for the polar part of $\mathbb{W}_{g,n}$ at $z_1 \to \mathfrak{a}$ solution by the topological recursion

Theorem 2 (B., Do, Karev, Lewanski, Moskowsky 20)

$$\mathbb{H}_{g,n}(\nu_1,\dots,\nu_n) = \sum_{\mu \vdash |\nu|} d^{2g-2+n+\ell(\mu)} \vec{q}_{\mu} \prod_{i=1}^n \frac{\left(\frac{\nu_i}{d}\right)^{\lfloor \frac{\nu_i}{d} \rfloor}}{\lfloor \frac{\nu_i}{d} \rfloor!}$$

$$\times \left(\sum_{m=0}^{\ell(\mu')} \frac{(-1)^{\ell(\mu')-m}}{m!} \sum_{\boldsymbol{\rho} \in \mathcal{P}_{d-1}^{m}} \prod_{j=1}^{m} \frac{|C_{\rho^{(j)}}| \left[\frac{d-|\rho^{(j)}|}{d} \right]_{\ell(\rho^{(j)})-1}}{|\rho^{(j)}|!} \int_{\overline{\mathcal{M}}_{g,n+m}} \frac{\Omega_{g,n+m}^{(d,d)} \left(-\overline{\nu}_{1}, \dots, -\overline{\nu}_{n}, d-|\rho^{(1)}|, \dots, d-|\rho^{(m)}| \right)}{\prod_{i=1}^{n} \left(1 - \frac{\nu_{i}}{d} \psi_{i} \right)} \right)$$

$$\mathcal{P}_{d-1}$$
 = partitions of size at most $d-1$

$$[x]_b = x(x+1)\cdots(x+b-1)$$

Strategy of the proof: interpolation between the double and d-orbifold cases

$$S_{t}: \begin{cases} x_{t}(z) &= \ln z - q_{d}z^{d} - t \sum_{j=1}^{d-1} q_{j}z^{j} \\ y_{t}(z) &= q_{d}z^{d} + t \sum_{j=1}^{d-1} q_{j}z^{j} \\ \omega_{0,2}^{t} &= \frac{\mathrm{d}z_{1}\mathrm{d}z_{2}}{(z_{1}-z_{2})^{2}} \end{cases} \xrightarrow{\mathsf{TR}} \omega_{g,n}^{t}$$

$$t = 0 \qquad \qquad t = 1$$

$$\omega_{g,n}^{0}(z_{1}, \dots, z_{n}) = \omega_{g,n}^{[d]}(\tilde{z}_{1}, \dots, \tilde{z}_{n})$$

$$\tilde{z} = q_{d}^{1/d}z \qquad x_{0}(z) = x_{[d]}(\tilde{z}) - \ln(q_{d}^{1/d})$$

$$\tilde{z} = q_{d}^{1/d}z \qquad x_{0}(z) = x_{[d]}(\tilde{z}) - \ln(q_{d}^{1/d})$$

Write the (convergent) Taylor expansion

$$\omega_{g,n}^1(z_1,\ldots,z_n) = \sum_{l>0} \frac{1}{l!} \, \partial_t^l \omega_{g,n}^t \omega_{g,n}(z_1,\ldots,z_n)|_{t=0}$$

where all derivatives are taken at $x_i=x_t(z_i)$ fixed as we want to extract the series expansion in variable $e^{x_i}\to 0$

TR has the following property under deformations of initial data

$$\partial_t \omega_{g,n}^t(z_1,\ldots,z_n) = \int_{z'\in\gamma} \Upsilon_t(z')\,\omega_{g,n+1}^t(z',z_1,\ldots,z_n) \quad \text{ at fixed } \ x_i = x_t(z_i)$$
 whenever $\ \varpi_t(z) := \partial_t x_t(z) \mathrm{d} y_t(z) - \partial_t y(z) \mathrm{d} x_t(z) = \int_{z'\in\gamma} \Upsilon_t(z')\,\omega_{0,2}^t(z,z')$

with γ away from $\mathfrak a$

For the deformation we are interested in : $\int_{z'\in\gamma}\Upsilon_t(z')\bullet = -\mathop{\rm Res}_{z'=\infty}\sum_{i=1}^{\alpha-1}\frac{q_j}{j}\,(z')^j\bullet$

To compute higher order derivatives, need successive chain rules since $x_t(z') = x'$ is considered fixed

- \leadsto relates $\omega_{g,n}^{\mathbf{q},[d]}$ to $(\omega_{g,n+m}^{[d]})_{m\geq 0}$ and thus to Chiodo integrals
- \rightarrow get the theorem by extracting the coefficients of $\prod_{i=1}^n d(e^{\mu_i x_i})$

The resulting formula for $\mathbb{H}_{g,n}(\nu_1,\ldots,\nu_n)$ is a polynomial in q_1,\ldots,q_{d-1} but only a Laurent polynomial in q_d

By its combinatorial meaning, it must be a polynomial in q_1, \dots, q_d

 \implies the Chiodo integral in prefactor of q_d^{-m} for m>0 must vanish

Corollary 3 (B., Do, Karev, Lewanski, Moskowsky 20)

Let $g \ge 0, n, \ell \ge 1, d \ge 2$

For any partitions $(\nu_1,\ldots,\nu_n),(\eta_1,\ldots,\eta_\ell)$ such that $\eta_1\leq d-1$ and $|\nu|+|\eta|< d\ell$

$$\sum_{k=1}^{\ell} \frac{(-1)^{\ell-k}}{k!} \sum_{\boldsymbol{\rho} \in \mathcal{P}_{d-1}^{k}} \prod_{a=1}^{k} \frac{\left[\frac{d-|\rho^{(a)}|}{d}\right]_{\ell(\rho^{(a)})-1}}{\prod_{j} |\rho_{j}^{(a)}|!} \int_{\overline{\mathcal{M}}_{g,n+k}} \frac{\Omega_{g,n}^{(d,d)} \left(-\overline{\nu}_{1}, \dots, -\overline{\nu}_{n}, d-|\rho^{(1)}|, \dots, d-|\rho^{(k)}|\right)}{\prod_{i=1}^{n} \left(1 - \frac{\nu_{i}}{d} \psi_{i}\right)} = 0$$

Corollary 3 (B., Do, Karev, Lewanski, Moskowsky 20)

Let $g \geq 0, n, \ell \geq 1, d \geq 2$

For any partitions $(\nu_1, \ldots, \nu_n), (\eta_1, \ldots, \eta_\ell)$ such that $\eta_1 \leq d-1$ and $|\nu| + |\eta| < d\ell$

$$\sum_{k=1}^{\ell} \frac{(-1)^{\ell-k}}{k!} \sum_{\substack{\rho \in \mathcal{P}_{d-1}^{k} \\ \sqcup_{a} \rho^{(a)} = \eta}} \prod_{a=1}^{k} \frac{\left[\frac{d-|\rho^{(a)}|}{d}\right]_{\ell(\rho^{(a)})-1}}{\prod_{j} |\rho_{j}^{(a)}|!} \int_{\overline{\mathcal{M}}_{g,n+k}} \frac{\Omega_{g,n}^{(d,d)}(-\overline{\nu}_{1}, \dots, -\overline{\nu}_{n}, d-|\rho^{(1)}|, \dots, d-|\rho^{(k)}|)}{\prod_{i=1}^{n} (1 - \frac{\nu_{i}}{d} \psi_{i})} = 0$$

• When $\eta_i + \eta_j \geq d$ for any $i \neq j$, there is a single term, and then

$$\int_{\overline{\mathcal{M}}_{g,n+\ell}} \frac{\Omega_{g,n}^{(d,d)} \left(-\overline{\nu}_1, \dots, -\overline{\nu}_n, d - \eta_1, \dots, d - \eta_\ell \right)}{\prod_{i=1}^n \left(1 - \frac{\nu_i}{d} \psi_i \right)} = 0$$

This vanishing is proved by Johnson-Pandharipande-Tseng 11 from geometry of $\overline{\mathcal{M}}_{g,a_1,...,a_n}(B\mathbb{Z}_d)$

 Other cases are new (would require a careful analysis of the boundary strata contributions in JPT)

Tested numerically with the SAGE package Admcycles

Delecroix, Schmitt, van Zelm 2002.01709

Double Hurwitz numbers

$$H_{1,1}(2) = \begin{bmatrix} [q_1^2] & \frac{1}{12} & \frac{27}{2} \int_{\overline{\mathcal{M}}_{1,3}} \frac{\Omega_{1;1,1,1}^{[3]}}{1-2\psi_1/3} \\ [q_2] & \frac{1}{4} & 9 \int_{\overline{\mathcal{M}}_{1,2}} \frac{\Omega_{1;1,2}^{[3]}}{1-2\psi_1/3} \\ [q_3^3] & \frac{3}{8} & \frac{27}{2} \int_{\overline{\mathcal{M}}_{1,4}} \frac{\Omega_{1;0,1,1,1}^{[3]}}{1-\psi_1} \\ [q_3] & 1 & 3 \int_{\overline{\mathcal{M}}_{1,1}} \frac{\Omega_{1;0,1,1}^{[3]}}{1-\psi_1} \\ [q_3] & 1 & 3 \int_{\overline{\mathcal{M}}_{1,1}} \frac{\Omega_{1;0,1,1}^{[3]}}{1-\psi_1} \\ [q_4^4] & \frac{4}{3} & \frac{27}{2} \int_{\overline{\mathcal{M}}_{1,5}} \frac{\Omega_{1;2,1,1,1,1}^{[3]}}{1-4\psi_1/3} \\ [q_1^2] & \frac{20}{3} & 54 \int_{\overline{\mathcal{M}}_{1,4}} \frac{\Omega_{1;2,1,1,1,1}^{[3]}}{1-4\psi_1/3} \\ [q_2^2] & \frac{7}{3} & 18 \int_{\overline{\mathcal{M}}_{1,3}} \frac{\Omega_{1;2,2,2}^{[3]}}{1-4\psi_1/3} - 6 \int_{\overline{\mathcal{M}}_{1,2}} \frac{\Omega_{1;2,1}^{[3]}}{1-4\psi_1/3} \\ [q_1q_3] & 6 & 36 \int_{\overline{\mathcal{M}}_{1,2}} \frac{\Omega_{1;2,1}^{[3]}}{1-4\psi_1/3} \\ [q_1^3] & \frac{625}{24} & \frac{135}{8} \int_{\overline{\mathcal{M}}_{1,5}} \frac{\Omega_{1;1,1,1,1,1}^{[3]}}{1-5\psi_1/3} \\ [q_1q_2] & \frac{125}{2} & \frac{135}{2} \int_{\overline{\mathcal{M}}_{1,3}} \frac{\Omega_{1;1,1,2,2}^{[3]}}{1-5\psi_1/3} - \frac{45}{2} \int_{\overline{\mathcal{M}}_{1,3}} \frac{\Omega_{1;1,1,1}^{[3]}}{1-5\psi_1/3} \\ [q_2q_3] & \frac{625}{2} & \frac{135}{2} \int_{\overline{\mathcal{M}}_{1,3}} \frac{\Omega_{1;1,1,1}^{[3]}}{1-5\psi_1/3} \\ [q_2q_3] & \frac{25}{2} & 45 \int_{\overline{\mathcal{M}}_{1,2}} \frac{\Omega_{1;1,1,2}^{[3]}}{1-5\psi_1/3} \\ \end{bmatrix}$$

Vanishing identities

•
$$\frac{1}{2} \int_{\overline{\mathcal{M}}_{1,2}} \frac{\Omega_{1;3,3}^{[6]}}{\left(1 - \frac{\psi_1}{2}\right)} = \int_{\overline{\mathcal{M}}_{1,3}} \frac{\Omega_{1;3,4,5}^{[6]}}{\left(1 - \frac{\psi_1}{2}\right)}. = \frac{1}{72}$$

•
$$\int_{\overline{\mathcal{M}}_{1,4}} \frac{\Omega_{1;2,1,2,3}^{[4]}}{\left(1 - \frac{\psi_1}{2}\right)} = \frac{1}{4} \int_{\overline{\mathcal{M}}_{1,3}} \frac{\Omega_{1;2,1,1}^{[4]}}{\left(1 - \frac{\psi_1}{2}\right)}. = \frac{1}{1536}$$

•
$$\frac{1}{2} \int_{\overline{\mathcal{M}}_{1,4}} \frac{\Omega_{1;5,5,5,6}^{[7]}}{\left(1 - \frac{2}{7}\psi_1\right)} + \frac{1}{2} \cdot \frac{2}{7} \cdot \frac{9}{7} \int_{\overline{\mathcal{M}}_{1,2}} \frac{\Omega_{1;5,2}^{[7]}}{\left(1 - \frac{2}{7}\psi_1\right)}$$

$$= \frac{3}{7} \cdot \frac{1}{2} \int_{\overline{\mathcal{M}}_{1,3}} \frac{\Omega_{1;5,6,3}^{[7]}}{\left(1 - \frac{2}{7}\psi_1\right)} + \frac{4}{7} \int_{\overline{\mathcal{M}}_{1,3}} \frac{\Omega_{1;5,5,4}^{[7]}}{\left(1 - \frac{2}{7}\psi_1\right)}.$$

Thank you for your attention!

Ekedahl, Lando, Shapiro, Vainshtein

Hurwitz numbers and intersections on moduli space of curves
Invent. Math 146 (2001) 2, 297-327

math.AG/0004096

Eynard, Mulase, Safnuk
The Laplace transform of the cut-and-join equation and the Bouchard-Mariño conjecture on Hurwitz numbers
Publ. Res. Inst. Math. Sci. 47 (2011), 2, 629-670
math.AG/0907.5224

Johnson, Pandharipande, Tseng Abelian Hurwitz-Hodge integrals Michigan Math. J. 1 (2011), 171-198 math.AG/0803.0499

Kramer, Lewanski, Popolitov, Shadrin
Towards an orbifold generalization of Zvonkine's r-ELSV formula
Trans. Amer. Math. Soc. 372 (2019), no. 6, 4447-4469
math.CO/1703.06725

Borot, Do, Karev, Lewanski, Moskowsky

Double Hurwitz numbers: polynomiality, topological recursion and intersection theory
math.AG/2002.00900