Resolution of Liouville CFT: Segal axioms and bootstrap

Colin Guillarmou

CNRS and Univ. Paris Saclay

January 4, 2022

Guillarmou (CNRS and Paris Saclay) Resolution of Liouville CFT: Segal axioms and boot

2d Conformal Field Theory (CFT)

A Conformal Field Theory is a quantum field theory with extra symmetries (conformal invariance).

1) Objects:

• M compact surface equipped with Riemannian metric g, and conformal class

$$[g] := \{ e^{\omega}g \, | \, \omega \in C^{\infty}(M) \}.$$

• A classical action $S_g : E \to R$ (E =space of fields, e.g. $E = H^s(M)$ for some $s \in \mathbb{R}$), depending on the background metric g. For example: Dirichlet energy (free field theory)

$$S_g(\varphi) := \int_M |
abla^g \varphi(x)|_g^2 dv_g(x)$$

Physicists consider special quantities represented by Feynmann path integrals:

- 2) Correlation and partition functions (in physics):
 - Partition fct: the mass of the formal measure $e^{-S_g(\varphi)}D\varphi$ on E

$$Z_g := \int_E e^{-S_g(\varphi)} D\varphi$$

• Correlation fct: $x_1, \ldots, x_n \in M$ some points, $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ some weights

$$\langle V_{\alpha_1}(x_1)\ldots V_{\alpha_n}(x_n)\rangle_g := \int_E e^{\alpha_1\varphi(x_1)}\ldots e^{\alpha_n\varphi(x_n)}e^{-S_g(\varphi)}D\varphi$$

 $V_{\alpha_i}(x_i) = e^{\alpha_i \varphi(x_i)}$ are called insertions at x_i with weights α_i .

Math definition of CFT

A Conformal Field Theory in dim = 2 is the data for each Riemannian closed surface (M, g) of

- partition function $Z_g \in \mathbb{R}$
- Correlation functions $\langle V_{\alpha_1}(x_1) \dots V_{\alpha_n}(x_n)
 angle_g \in \mathbb{R}$

satisfying the properties:

• Diffeomorphism invariance: for any $\psi: M \to M$ orientation preserv. diffeo,

$$Z_{\psi^*g} = Z_g, \quad \langle V_{\alpha_1}(x_1) \dots V_{\alpha_n}(x_n) \rangle_{\psi^*g} = \langle V_{\alpha_1}(\psi(x_1)) \dots V_{\alpha_n}(\psi(x_n)) \rangle_g$$

• Conformal covariance: if $\omega \in \mathcal{C}^\infty$ and $\hat{g} = e^\omega g$

$$Z_{\hat{g}} = Z_g \exp\left(\frac{c}{96\pi} \int_M |d\omega|_g^2 + 2K_g\omega\right)$$

$$\langle V_{\alpha_1}(x_N) \dots V_{\alpha_n}(x_n) \rangle_{\hat{g}} = \langle V_{\alpha_1}(x_1) \dots V_{\alpha_n}(x_n) \rangle_g \exp\Big(-\sum_{j=1}^n \Delta_{\alpha_k} \omega(x_k)\Big) \frac{Z_{\hat{g}}}{Z_g}$$

 K_g =scalar curv. of g, (Δ_{α}, c) =constants associated to the CFT.

Guillarmou (CNRS and Paris Saclay)

Resolution of Liouville CFT: Segal axioms and boot

Main problem in physics: Since (a priori), Feynmann integral is not mathematically defined, guess expressions for what should be Z_g and $\langle V_{\alpha_1}(x_1) \dots V_{\alpha_n}(x_n) \rangle_g$.

Tools in physics: Use conformal symmetries. The axioms impose strong restriction on the possible values of partition and correlations fcts:

- Integrability $\implies (x_1, \ldots, x_n) \mapsto \langle V_{\alpha_1}(x_1) \ldots V_{\alpha_n}(x_n) \rangle_g$ should satisfy certain PDE
- Decomposition into blocks: A Feynmann integral can be decomposed into Feynmann integrals over fields restricted to subdomains of the surface *M* (Segal axioms), this method is related to the conformal bootstrap (dev. by Belavin-Polyakov-Zamolodchikov ('84))

Segal axioms (physics heuristics)

Desintegration of Feynmann integral using conditionning on $C = \partial M_1 = \partial M_2$: if

$$S_{M,g}(\varphi) = S_{M_1,g}(\varphi|_{M_1}) + S_{M_2,g}(\varphi|_{M_2})$$

one should have

$$\int_{E(M)} e^{-S_{M,g}(\varphi)} D\varphi = \int_{E(C)} \left(\int_{\substack{E(M_1), \\ \varphi = \varphi_0}} e^{-S_{M_1,g}(\varphi|_{M_1})} D\varphi \right) \left(\int_{\substack{E(M_2), \\ \varphi = \varphi_0}} e^{-S_{M_2,g}(\varphi|_{M_2})} D\varphi \right) D\varphi_0$$
$$= \int_{E(C)} \mathcal{A}_{M_1}(\varphi_0) \mathcal{A}_{M_2}(\varphi_0) D\varphi_0$$

Segal axioms

A CFT is

- Object: \mathcal{H} a Hilbert space attached to \mathbb{S}^1 (where \mathcal{H} should represent $L^2(E(\mathbb{S}^1))$)
- Morphism: to each (M, g) Riemannian surface with parametrized geodesic boundary $\partial M = \sqcup_{i=1}^{b} C_i$, we associate an amplitude $\mathcal{A}_{M,g} \in \otimes^{b} \mathcal{H}$
- Conformal covariance: for $\omega \in C^{\infty}(M)$ with $\omega = 0$ on ∂M

$$\mathcal{A}_{M,e^{\omega}g}=e^{rac{c}{96\pi}\int_{M}|d\omega|_{g}^{2}+2K_{g}\omega}\mathcal{A}_{M,g}$$

• Gluing/fonctoriality: if we glue (M_1, g_1) with (M_2, g_2) by identifying $C_{j_1} \sim C_{j_2}$ $(\partial M_1 = \sqcup_{j=1}^{b_1} C_j, \text{ and } \partial M_2 = \sqcup_{j=b_1+1}^{b_1+b_2} C_j)$, for $(M, g) := (M_1 \sharp M_2, g_1 \sharp g_2)$

$$\mathcal{A}_{M,g} = \mathrm{Tr}_{j_1 j_2}(\mathcal{A}_{M_1,g_1} \otimes \mathcal{A}_{M_2,g_2})$$

where Tr_{ij} is the *ij* partial trace on $\otimes^{b_1+b_2}\mathcal{H}$ (maps to $\otimes^{b_1+b_2-2}\mathcal{H}$).

$$\mathcal{A}_{\mathcal{M},g}(\Phi_{1} \Phi_{2}, \Phi_{5}, \Phi_{6}, \Phi_{7}, \Phi_{9}) = \langle \underbrace{\mathcal{A}_{\mathcal{M}_{1},g_{1}}(\Phi_{1}, \Phi_{2}, \cdot)}_{\in \mathcal{H}}, \underbrace{\mathcal{A}_{\mathcal{M}_{2},g_{2}}(\cdot, \Phi_{5}, \Phi_{6}, \Phi_{7}, \Phi_{9})}_{\in \mathcal{H}} \rangle_{\mathcal{H}}$$

Liouville CFT

Liouville action on Riemannian surface (M, g) is

$$\mathcal{S}_{g}(arphi) = rac{1}{4\pi} \int_{\mathcal{M}} (|darphi|_{g}^{2} + \mathcal{Q}\mathcal{K}_{g}arphi + e^{\gammaarphi}) \mathrm{dv}_{g}$$

with $Q=2/\gamma+\gamma/2$ and $\gamma\in$ (0,2), ${\it K_g}=$ scalar curvature of g

• In physics, $Q := 2/\gamma + \gamma/2$ with $\gamma \in (0, 2]$ and Liouville CFT is a CFT with central charge and conformal weights

$${f c}=1+6Q^2, \quad \Delta_lpha:=rac{lpha}{2}(Q-rac{lpha}{2})$$

• Critical points of S_g are related to finding φ_0 s.t. $K_{e^{\gamma \varphi_0}g} =$ negative constant.

Mathematical definition of Liouville CFT

- (Ω, \mathbb{P}) proba space, (α_n) i.i.d Gaussian in $\mathcal{N}(0, 1)$
- Gaussian Free Field $X_g := \sqrt{2\pi} \sum_{n>0} \alpha_n \frac{u_n}{\sqrt{\lambda_n}} \in H^{-\varepsilon}(M)$ where $(\lambda_n)_{n=0}^{\infty}$ spectrum of Δ_g with eigenfunctions u_n :

$$\mathbb{E}[X_g(x)X_g(x')] = 2\pi\Delta_g^{-1}(x,x') \sim -\log(d_g(x,x')) + C^0(M \times M)$$

- There is a measure \mathcal{P}' on $H^{-\varepsilon}(M) \cap 1^{\perp}$ which is the law of the random variable X_g , then set $\mathcal{P} = dc \otimes \mathcal{P}'$ on $H^{-\varepsilon}(M)$, dc = Lebesgue on $\mathbb{R} = \ker \Delta_g$.
- This allows to define the Gaussian integral: for $F \in L^1(H^{-\varepsilon}(M), \mathcal{P})$

$$\int_{H^{-\varepsilon}(M)} F(\varphi) e^{-\frac{1}{4\pi} \int_{M} |d\varphi|^{2}} D\varphi \stackrel{def}{=} \frac{\sqrt{\operatorname{Vol}_{g}(M)}}{\sqrt{\operatorname{det}'(\Delta_{g})}} \int_{\mathbb{R}} \mathbb{E}[F(\boldsymbol{c} + X_{g})] d\boldsymbol{c}.$$

Define the correlations/partition functions by the probabilistic expression:

$$\langle V_{\alpha_1}(x_1) \dots V_{\alpha_n}(x_n) \rangle_g \stackrel{\text{def}}{=} \frac{\sqrt{\operatorname{Vol}(M)}}{\sqrt{\operatorname{det}'(\Delta_g)}} \int_{\mathbb{R}} \mathbb{E} \Big[\prod_{j=1}^n e^{\alpha_j (c + X_g(x_j))} e^{-\frac{1}{4\pi} \int_M (QK_g(c + X_g) + e^{\gamma(c + X_g)}) \mathrm{dv}_g} \Big] dc$$

Kahane '85: Gaussian multiplicative chaos: one can make sense of the random measure $e^{\gamma X_g} dv_g$ for $\gamma \in (0, 2)$: convolve X_g at small scale $\delta > 0$ and let

$$e^{\gamma X_g} \mathrm{dv}_g \stackrel{def}{=} \lim_{\delta \to 0} e^{\gamma X_{g,\delta} - \frac{\gamma^2}{2} \mathbb{E}[X_{g,\delta}^2]} \mathrm{dv}_g$$

Condition for existence: $\sum_{i} \alpha_i - Q\chi(M) > 0$ and $\alpha_i < Q$, called Seiberg bounds.

Theorem (David-Kupiainen-Rhodes-Vargas '16, D-R-V'16, Guillarmou-R-V '18) Liouville CFT constructed with probability is a CFT with central charge $c_L = 1 + 6Q^2$ for $\gamma \in (0, 2]$ and conformal weights $\Delta_{\alpha} := \frac{\alpha}{2}(Q - \frac{\alpha}{2})$.

Hilbert space of LCFT (Segal axioms)

Hilbert space of LCFT: if
$$\Omega:=(\mathbb{R}^2)^{\mathbb{N}^*}$$
 and $\mathbb{P}=\prod_{n\geq 1}rac{1}{2\pi}e^{-rac{1}{2}(x_n^2+y_n^2)}dx_ndy_n$

$$\mathcal{H}:=L^2(\mathbb{R}_c imes\Omega,dc\otimes\mathbb{P})=L^2(H^{-arepsilon}(\mathbb{S}^1),d\mu)$$

where μ is pushfoward of $dc \otimes \mathbb{P}_{\Omega}$ by the random field $\varphi = c + \frac{1}{2} \sum_{n \neq 0} \frac{x_n + iy_n}{|n|^{1/2}} e^{in\theta}$.

Definition of amplitudes (Segal axioms)

Probabilistic definition of amplitude of (M, g) with b parametrized geodesic boundary circles and n weighted marked points (x_i, α_i) :

$$\mathcal{A}_{M,g,x,\alpha}(\varphi) \stackrel{\text{def}}{=} \mathbb{E}\Big[\prod_{i=1}^{n} e^{\alpha_{i}(\boldsymbol{X}_{D}(x_{i})+P\varphi(x_{i}))} e^{-\frac{1}{4\pi}\int_{M}(QK_{g}(\boldsymbol{X}_{D}+P\varphi)+e^{\gamma(\boldsymbol{X}_{D}+P\varphi)}) \mathrm{d}v_{g}}\Big] \mathcal{A}_{M,g}^{0}(\varphi)$$

- $c + X_g = X_D + P \varphi$ with $\varphi = (\varphi^1, \dots, \varphi^b) \in H^{-\varepsilon}(\mathbb{S}^1)^b$,
- X_D = GFF with Dirichlet condition, \mathbb{E} = expectation wrt X_D ,
- $P\varphi =$ harmonic extension of φ on M with

$$arphi^j=c^j+\sum_{n
eq 0}arphi^j e^{in heta}, \quad arphi^j_n=rac{x_n^j+iy_n^j}{2\sqrt{n}}, \quad x_n^j, y_n^j\in\mathcal{N}(0,1), \quad c^j\in\mathbb{R}.$$

•
$$\mathcal{A}^0_{M,g}(\varphi) = e^{-\frac{1}{2}\langle (D_M - D)\varphi, \varphi \rangle}$$
 half-density term $(D_M = \mathsf{DN} \text{ map on } M, D = \sqrt{\Delta}_{\mathbb{S}^1}).$

Guillarmou (CNRS and Paris Saclay) Resolution of Liouville CFT: Segal axioms and boot

Segal Axioms for LCFT

Recall $\mathcal{H} := L^2(H^{-\varepsilon}(\mathbb{S}^1), d\mu).$

Theorem (G-Kupiainen-Rhodes-Vargas '21)

1) Let (M, g) be Riemannian surface with b parametrized geodesic boundary circles, marked points $x = (x_1, \ldots, x_m)$ with weight $\alpha = (\alpha_1, \ldots, \alpha_m)$. Then if $\sum_i \alpha_i + Q\chi(M) > 0$

$$\mathcal{A}_{M,g,x,lpha} \in L^2(H^{-arepsilon}(\mathbb{S}^1)^b,d\mu^b) = \mathcal{H}^{\otimes b}.$$

2) The amplitudes satisfy conformal covariance required in Segal axioms.3) The amplitudes satisfy gluing properties required in Segal axioms.

DOZZ and Conformal bootstrap

1) 3-pt function on \mathbb{S}^2 : Using Möbius transform $\psi \in PSL_2(\mathbb{C})$ and conformal covariance, 3-point function on \mathbb{S}^2 reduces to knowing $C(\alpha_1, \alpha_2, \alpha_3) := \langle V_{\alpha_1}(0) V_{\alpha_2}(1) V_{\alpha_3}(\infty) \rangle_{\mathbb{S}^2}$

Kupiainen-Rhodes-Vargas '17: There is an explicit formula for the 3pt function $C(\alpha_1, \alpha_2, \alpha_3)$ in terms of special functions, called DOZZ formula (Dorn-Otto-Zamolodchikov-Zamolodchikov)

Let
$$(x_1,x_2,x_3)=(0,1,\infty)$$
, $arlpha:=lpha_1+lpha_2+lpha_3$, then for $g=rac{|dz|^2}{\max(1,|z|^4)}$ on $\hat{\mathbb{C}}\simeq\mathbb{S}^2$

$$\langle \prod_{i=1}^{3} e^{\alpha_{i}\varphi(x_{i})} \rangle_{\mathbb{S}^{2}} := \left(\frac{\pi\mu\Gamma(\frac{\gamma^{2}}{4})}{\Gamma(1-\frac{\gamma^{2}}{4})} \left(\frac{\gamma}{2}\right)^{2-\frac{\gamma^{2}}{2}} \right)^{\frac{2Q-\bar{\alpha}}{\gamma}} \frac{\Upsilon'_{\frac{\gamma}{2}}(0)\Upsilon_{\frac{\gamma}{2}}(\alpha_{1})\Upsilon_{\frac{\gamma}{2}}(\alpha_{2})\Upsilon_{\frac{\gamma}{2}}(\alpha_{3})}{\Upsilon_{\frac{\gamma}{2}}(\frac{\bar{\alpha}}{2}-Q)\Upsilon_{\frac{\gamma}{2}}(\frac{\bar{\alpha}}{2}-\alpha_{1})\Upsilon_{\frac{\gamma}{2}}(\frac{\bar{\alpha}}{2}-\alpha_{2})\Upsilon_{\frac{\gamma}{2}}(\frac{\bar{\alpha}}{2}-\alpha_{3})}$$

with
$$\Upsilon_{\frac{\gamma}{2}}(z) := \exp\left(\int_0^\infty \left(\left(\frac{Q}{2}-z\right)^2 e^{-t} - \frac{\left(\sinh\left(\left(\frac{Q}{2}-z\right)\frac{t}{2}\right)\right)^2}{\sinh\left(\frac{t\gamma}{4}\right)\sinh\left(\frac{t}{\gamma}\right)}\right)\frac{dt}{t}\right)$$

2) Conformal bootstrap: use representation theory to express *n*-pt correlation function in terms of 3-pt functions and universal functions called conformal blocks depending on (c, Δ_{α}) .

Theorem (G-Kupiainen-Rhodes-Vargas '20)

The 4-pt function on the sphere is given in terms of 3-pt functions and conformal blocks $\mathcal{F}_{p,\alpha}(z)$ by: if $(x_1, x_2, x_3, x_4) = (0, z, 1, \infty)$ with |z| < 1 and $\alpha = (\alpha_1, \ldots, \alpha_4)$

$$\langle \prod_{i=1}^{4} V_{\alpha_{i}}(x_{i}) \rangle_{\mathbb{S}^{2}} = \frac{1}{2\pi} \int_{0}^{\infty} \underbrace{\mathcal{C}(\alpha_{1}, \alpha_{2}, \mathbf{Q} - ip)}_{\mathcal{C}(\mathbf{Q} - ip)} \underbrace{\mathcal{C}(\mathbf{Q} + ip, \alpha_{3}, \alpha_{4})}_{\mathcal{C}(\mathbf{Q} + ip, \alpha_{3}, \alpha_{4})} |z|^{2(\Delta_{\mathbf{Q} + ip} - \Delta_{\alpha_{1}} - \Delta_{\alpha_{2}})} |\mathcal{F}_{p, \alpha}(z)|^{2} dp$$

Heuristic

Heuristically, this can be thought of as

$$\int_0^\infty \left\langle V_{\alpha_1}(0) V_{\alpha_2}(z), V_{Q+ip}(\infty) \right\rangle_{\mathcal{H}} \left\langle V_{Q+ip}(\infty), V_{\alpha_3}(1) V_{\alpha_4}(0) \right\rangle_{\mathcal{H}} |z|^{\mathfrak{s}(p,\alpha)} |\mathcal{F}_{p,\alpha}(z)|^2 dp$$

where we think of 3-pt function as a scalar product $\langle V_{\alpha_1}(0)V_{\alpha_2}(z), V_{Q+ip}(\infty)\rangle_{\mathcal{H}}$ in a Hilbert space \mathcal{H} of two states (or amplitudes) $u_1 = V_{\alpha_1}(0)V_{\alpha_2}(z)$ and $u_2 = V_{Q+ip}(\infty)$.

This ressembles a Plancherel formula where $(V_{Q+ip}(\infty))_{p>0}$ form a basis of eigenfunctions of an operator H on \mathcal{H} .

$$\langle f_1, f_2 \rangle_{L^2(\mathbb{R})} = \frac{1}{2\pi} \int_{\mathbb{R}} \langle f_1, e^{ipc} \rangle \langle e^{ipc}, f_2 \rangle dp, \quad -\partial_c^2 e^{ipc} = p^2 e^{ipc}.$$

Conformal bootstrap for 4-point function on \mathbb{S}^2

Idea: cut the sphere in two disks M_1, M_2 :

Let $\varphi := c + \frac{1}{2} \sum_{n \neq 0} |n|^{-1/2} (x_n + iy_n) e^{in\theta} \in H^{-\varepsilon}(\mathbb{S}^1)$ real-valued random field with $x_n, y_n \in \mathcal{N}(0, 1)$ i.i.d., and define for i = 1, 2 the amplitudes

$$A_{M_i,g}(\varphi) = \mathbb{E}\Big[\prod_{j\leq 2i}^2 e^{\alpha_j(\mathsf{X}_D + P\varphi)(x_j)} e^{-\frac{1}{4\pi}\int_{M_i}(QK_g(\mathsf{X}_D + P\varphi) + e^{\gamma(\mathsf{X}_D + P\varphi)})\mathrm{dv}_g}\Big]$$

X_D = GFF on M_i with Dirichlet condition, E = expectation wrt X_D,
Pφ harmonic extension of φ: Δ_{Mi}Pφ = 0, Pφ|_{∂Mi} = φ

Corollary (Gluing formula)

The amplitude of M_i is in $L^2(H^{-\varepsilon}(\mathbb{S}^1)^b, d\mu) = \mathcal{H}$ and

$$\langle \prod_{j=1}^{4} V_{lpha_{j}}(x_{j})
angle_{\mathbb{S}^{2}} = \int_{H^{-arepsilon}(\mathbb{S}^{1})} A_{M_{1}}(\varphi) A_{M_{2}}(\varphi) d\mu(\varphi) = \langle A_{M_{1}}, A_{M_{2}}
angle_{\mathcal{H}}$$

Tool for proof: decompose GFF on \mathbb{S}^2 as $X_g = X_{M_1,D} + X_{M_2,D} + P\varphi$ (\simeq conditioning on \mathbb{S}^1)

Idea: decompose the \mathcal{H} pairing using diagonalization of a certain operator (Plancherel formula).

The propagator and the Hamiltonian

For the flat annulus $\mathbb{A}_t = (\{z \in \mathbb{C} \mid e^{-t} \le |z| \le 1\}, g = \frac{|dz|^2}{|z|^2})$, define the amplitude as above

$$A_{\mathbb{A}_{t}}(\varphi,\varphi') := \mathbb{E}\Big[e^{-\frac{1}{4\pi}\int_{\mathbb{A}_{t}}e^{\gamma(\mathsf{X}_{\mathsf{D}}+\mathsf{P}(\varphi,\varphi'))}\mathrm{d}\mathbf{v}_{g}}\Big]e^{-\frac{1}{2}\langle(\mathsf{D}_{\mathbb{A}_{t}}-\mathsf{D})(\varphi,\varphi'),(\varphi,\varphi')\rangle}$$

where $D_{\mathbb{A}_t} = Dirichlet-to-Neumann of \mathbb{A}_t$ and $D = |\partial_{\theta}|$ (note: $D_{\mathbb{A}_t} - D$ is smoothing). Define the associated operator $S(t) : \mathcal{H} \to \mathcal{H}$:

$$orall arphi \in H^{-arepsilon}(\mathbb{S}^1), \quad \left((S(t)F)(arphi) := \int_{H^{-arepsilon}(\mathbb{S}^1)} A_{\mathbb{A}_t}(arphi, arphi')F(arphi')d\mu(arphi')
ight)$$

idea 1: gluing two annuli produces bigger annuli $\implies S(t)$ should be a semi-group.

with $\mathbb{A}_{t_1,t_2} = \{ |z| \in [e^{-t_2}, e^{-t_1}] \}$

idea 2: gluing annulus \mathbb{A}_t with a disk \mathbb{D} produces a bigger disk $\Longrightarrow S(t)A_{\mathbb{D},0,\alpha} = e^{\lambda t}A_{\mathbb{D},0,\alpha}$.

Proposition (G-Kupiainen-Rhodes-Vargas '20)

The operator $e^{-(\frac{1+6Q^2}{12})t}S(t) = e^{-tH}$ is a contraction semi-group on $\mathcal{H} = L^2(\mathbb{R} \times \Omega; dc \otimes \mathbb{P})$ with self-adjoint generator

$$\mathsf{H} = \frac{1}{2}(-\partial_c^2 + Q^2 + 2\mathsf{P} + e^{\gamma c}V) =: \mathsf{H}_0 + \frac{1}{2}e^{\gamma c}V$$

with P the infinite harmonic oscillator and $V \in L^{\frac{2}{\gamma^2}-}(\Omega)$ a positive potential/measure:

$$\mathsf{P} := \sum_{n=1}^{\infty} n[(\partial_{x_n})^* \partial_{x_n} + (\partial_{y_n})^* \partial_{y_n}], \quad V(\tilde{\varphi}) := \frac{1}{2\pi} \int_{\mathbb{S}} e^{\gamma \tilde{\varphi}(\theta)} d\theta$$

where $ilde{arphi} = arphi - rac{1}{2\pi}\int_{\mathbb{S}^1} arphi(heta) d heta = arphi - oldsymbol{c}.$

Tool: Feynmann-Kac representation of e^{-tH} .

Spectral resolution for the free field Hamiltonian H_0

Fact 1: P is self-adjoint on $L^2(\Omega, \mathbb{P})$ and has discrete spectrum $\sigma(\mathsf{P}) = \mathbb{N}_0$. Eigenfunctions are indexed by finite sequences $\mathsf{k} = (k_1, \ldots, k_n, 0, \ldots), \mathsf{l} = (l_1, \ldots, l_{n'}, 0, \ldots) \in \mathbb{N}^{\mathbb{N}}$ and given by

$$\psi_{\mathsf{k}\mathsf{l}} = \prod_{n} h_{k_n}(x_n) h_{l_n}(y_n), \quad \mathsf{P}\psi_{\mathsf{k}\mathsf{l}} = (|\mathsf{k}| + |\mathsf{l}|)\psi_{\mathsf{k}\mathsf{l}}$$

with $h_k(x)$ (L^2 -normalized) Hermite polynomial and $|k| = \sum_n nk_n \in \mathbb{N}$.

Fact 2: $-\partial_c^2 + Q^2$ had continuous spectrum $\sigma(-\partial_c^2 + Q^2) = [Q^2, \infty)$, eigenfunctions are e^{ipc} with eigenvalue $p^2 + Q^2$.

Plancherel formula: for $u_1, u_2 \in L^2(\mathbb{R} \times \Omega)$

$$\boxed{\langle u_1, u_2 \rangle_{\mathcal{H}} = \sum_{\mathsf{k}, \mathsf{l} \in \mathcal{N}} \int_{\mathbb{R}} \langle u_1, e^{i \mathsf{p} \mathsf{c}} \psi_{\mathsf{k} \mathsf{l}} \rangle_{\mathcal{H}} \langle e^{i \mathsf{p} \mathsf{c}} \psi_{\mathsf{k} \mathsf{l}}, u_2 \rangle_{\mathcal{H}} d\mathbf{p}}$$

Diagonalization of H using scattering theory:

Theorem (G-Kupiainen-Rhodes-Vargas '20)

Let $\gamma \in (0,2), Q = 2/\gamma + \gamma/2$. Then

- The spectrum of H is absolutely continuous, each $E \in [\frac{Q^2}{2}, \infty)$ is of finite multiplicity
- ∃ a complete family of generalized eigenstates Φ_{Q+ip,k,l} ∈ ∩_{ε>0}e^{-εc} L²(ℝ_c × Ω) labeled by p ∈ ℝ₊ and k = (k₁,..., k_n, 0,...), l = (l₁,..., l_n', 0,...) ∈ ℕ^ℕ s.t.

$$\mathsf{H}\Phi_{Q+ip,\mathsf{k},\mathsf{l}} = \Big(\frac{Q^2}{2} + \frac{p^2}{2} + |\mathsf{k}| + |\mathsf{l}|\Big)\Phi_{Q+ip,\mathsf{k},\mathsf{l}}.$$

• $\Phi_{Q+ip,k,l}$ is a complete family diagonalizing $H: \forall u_1, u_2 \in L^2(\mathbb{R} \times \Omega)$

$$\boxed{\langle u_1, u_2 \rangle_{L^2} = \frac{1}{2\pi} \sum_{\mathbf{k}, \mathbf{l} \in \mathcal{N}} \int_0^\infty \langle u_1, \Phi_{Q+ip, \mathbf{k}, \mathbf{l}} \rangle_{L^2} \langle \Phi_{Q+ip, \mathbf{k}, \mathbf{l}}, u_2 \rangle_{L^2} dp}$$

Link with primary field and highest weight vector

Proposition (G-Kupiainen-Rhodes-Vargas'20)

1) The (probabilistic) amplitude of the unit disk $(\mathbb{D}, |dz|^2)$ with insertion $V_{\alpha}(0) = e^{\alpha \varphi(0)}$ for $\alpha < Q$:

$$\Phi_{\alpha}(\varphi) := A_{\mathbb{D},\alpha}(\varphi) = \mathbb{E}\Big[e^{\alpha(X_D + P\varphi)(0)}e^{-\frac{1}{4\pi}\int_{\mathbb{D}}e^{\gamma(X_D + P\varphi)}\mathrm{dv}_{\mathbb{D}}}\Big] \in e^{(\alpha - Q - \varepsilon)c_-}L^2(\mathbb{R} \times \Omega)$$

is an eigenfunction of H:

$$H\Phi_{lpha}=lpha(Q-rac{lpha}{2})\Phi_{lpha}=2\Delta_{lpha}\Phi_{lpha}$$

2) The map $\alpha \mapsto \Phi_{\alpha}$ extends analytically to $\operatorname{Re}(\alpha) \leq Q$ with value in weighted space $e^{(\alpha-Q-\varepsilon)c_-}L^2(\mathbb{R}\times\Omega)$ and $\Phi_{Q+ip,0,0} = \Phi_{Q+ip}$. 3) The map $\alpha \mapsto \Phi_{\alpha,k,l}$ also extends analytically to $\{\operatorname{Re}(\alpha) \leq Q\} \cap \{|Q-\alpha| > |k| + |l|\}$

Remark: no probabilistic representation of Φ_{α} for $|\operatorname{Re}(\alpha - Q)| < |\operatorname{Im}(\alpha - Q)|$

Guillarmou (CNRS and Paris Saclay) Resolution of Liouville CFT: Segal axioms and boot

Figure: Analytic continuation of eigenstates $\Psi_{\alpha,k,l}$ and probabilistic region, $\lambda_{kl} := |\mathbf{k}| + |\mathbf{l}|$.

In probabilistic region, intertwining (scattering):

$$\Phi_{\alpha,\mathbf{k},\mathbf{l}} = \lim_{t \to \infty} e^{t(\Delta_{\alpha} + |\mathbf{k}| + |\mathbf{l}|)} e^{-t\mathbf{H}} \underbrace{(e^{(\alpha - Q)c}\psi_{\mathbf{k}\mathbf{l}})}_{\mathbf{H}_{0} \text{ eigenst}}.$$

Descendent fields and unitary representation of Virasoro algebra

• There is a family of operators L_n , \tilde{L}_n on $L^2(\mathbb{R} \times \Omega) = L^2(H^{-\varepsilon}(\mathbb{S}^1))$ for $n \in \mathbb{Z}$ such that

$$L_n^* = L_{-n}, \quad [L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m}$$

and same for \tilde{L}_n .

For n > 0, L_n are annihilation operators, L_{-n} are creation operators
 H = L₀ + L̃₀ and

$$L_n\Phi_{\alpha}=\tilde{L}_n\Phi_{\alpha}=0,\quad\forall n>0$$

• For two Young diagrams $\nu = (\nu_1 \geq \cdots \geq \nu_k)$ and $\tilde{\nu} = (\tilde{\nu}_1 \geq \cdots \geq \tilde{\nu}_{\tilde{k}})$, $(\nu_j \in \mathbb{N})$

$$\Psi_{\alpha,\nu,\tilde{\nu}} := \prod_{\ell,\tilde{\ell}} L_{-\nu_{\ell}} \tilde{L}_{-\tilde{\nu}_{\tilde{\ell}}} \Phi_{\alpha}$$

is a linear combination of the $\Phi_{\alpha,k,l}$ with $|\nu| + |\nu'| = |\mathbf{k}| + |\mathbf{l}|$. • $(\Psi_{\alpha,\nu,\tilde{\nu}})_{\alpha,\nu,\tilde{\nu}}$ is not orthonormal

Spectral resolution in terms of Virasoro descendents, application

$$\langle u_1, u_2 \rangle = \frac{1}{2\pi} \sum_{|\nu'|=|\nu|} \sum_{|\tilde{\nu}'|=|\tilde{\nu}|} \int_0^\infty \langle u_1, \Psi_{Q+i\rho,\nu,\tilde{\nu}} \rangle \langle \Psi_{Q+i\rho,\nu',\tilde{\nu}'}, u_2 \rangle F_{Q+i\rho}^{-1}(\nu,\nu') F_{Q+i\rho}^{-1}(\tilde{\nu},\tilde{\nu}') d\rho$$

where $\nu, \nu', \tilde{\nu}, \tilde{\nu}'$ sum is over Young diagrams and F_{Q+ip} are called Schapovalov matrices (Gram matrices of change of basis).

$$\begin{split} &\langle \prod_{i=1}^{4} V_{\alpha_i}(x_i) \rangle_{\mathbb{S}^2} = \langle A_{M_1}, A_{M_2} \rangle_{\mathcal{H}} \\ &= \frac{1}{2\pi} \sum_{|\nu'| = |\nu|} \sum_{|\tilde{\nu}'| = |\tilde{\nu}|} \int_0^\infty \langle A_{M_1}, \Psi_{Q+ip,\nu,\tilde{\nu}} \rangle \langle \Psi_{Q+ip,\nu',\tilde{\nu}'}, A_{M_2} \rangle F_{Q+ip}^{-1}(\nu,\nu') F_{Q+ip}^{-1}(\tilde{\nu},\tilde{\nu}') \, dp \end{split}$$

Ward identities and final formula for 4pt function on \mathbb{S}^2

For $M_1 = \mathbb{D}$ the disk with two insertions $V_{\alpha_1}(0), V_{\alpha_2}(z)$, Ward identity reads:

$$\begin{split} \langle A_{M_1}, \Psi_{Q+ip,\nu,\tilde{\nu}} \rangle = & \langle A_{M_1}, \prod_{\ell,\tilde{\ell}} L_{-\nu_{\ell}} \tilde{L}_{-\tilde{\nu}_{\tilde{\ell}}} \Phi_{Q+ip} \rangle \\ = & \langle A_{M_1}, \Psi_{Q+ip} \rangle w_{\nu}(\alpha_1, \alpha_2, p) w_{\tilde{\nu}}(\alpha_1, \alpha_2, p) \overline{z}^{|\nu|} z^{|\tilde{\nu}|} |z|^{2(\Delta_{Q+ip} - \Delta_{\alpha_1} - \Delta_{\alpha_2})} \\ = & C(\alpha_1, \alpha_2, Q+ip) w_{\nu}(\alpha_1, \alpha_2, p) w_{\tilde{\nu}}(\alpha_1, \alpha_2, p) \overline{z}^{|\nu|} z^{|\tilde{\nu}|} |z|^{2(\Delta_{Q+ip} - \Delta_{\alpha_1} - \Delta_{\alpha_2})} \end{split}$$

with $w_{\nu}(\alpha_1, \alpha_2, p)$ algebraic coeff, depend only on Virasoro commutations and $\Delta_{\alpha_j}, \Delta_{Q+ip}$.

Theorem (G-Kupiainen-Rhodes-Vargas '20)

The 4-pt function on the sphere is given by

$$\langle \prod_{i=1}^{4} V_{\alpha_i}(x_i) \rangle_{\mathbb{S}^2} = \frac{1}{2\pi} \int_0^\infty \underbrace{\mathcal{C}(\alpha_1, \alpha_2, \mathbf{Q} - ip)}^{3-pt \ fct} \underbrace{\mathcal{C}(\mathbf{Q} + ip, \alpha_3, \alpha_4)}^{3-pt \ fct} |z|^{2(\Delta_{Q+ip} - \Delta_{\alpha_1} - \Delta_{\alpha_2})} |\mathcal{F}_{p,\alpha}(z)|^2 dp$$

Conformal blocks and 3pt function

The term $\mathcal{F}_{p,\alpha}(z)$ is called conformal block, it is a series in z

$$\mathcal{F}_{p,\alpha}(z) = \sum_{n=0}^{\infty} W_n(p, \alpha_1, \alpha_2, \alpha_3, \alpha_4) z^n$$

with $W_n(p, \alpha_1, \alpha_2, \alpha_3, \alpha_4)$ algebraic coefficients depending only on $\Delta_{\alpha_j}, \Delta_{Q+ip}$ and Virasoro commutation relations (thus $c = 1 + 6Q^2$).

Corollary (G-Kupiainen-Rhodes-Vargas '20)

The conformal block series converges for almost all p.

Conformal Bootstrap for general surfaces

Theorem (G-Kupiainen-Rhodes-Vargas 21': modular bootstrap)

For a closed Riemann surface (M, g) with m marked points $x = (x_1, \ldots, x_m) \in M^m$ and weights $\alpha = (\alpha_1, \ldots, \alpha_m) \in (0, Q)^m$, the Liouville correlation functions are given by

$$\langle V_{\alpha_1}(x_1) \dots V_{\alpha_n}(x_m) \rangle_{M,g} = C_g \int_{\mathbb{R}^{3h-3+m}_+} \rho(P,\alpha) |\mathcal{F}_{P,\alpha}(q)|^2 dP$$

• $\alpha = (\alpha_1, \ldots, \alpha_m), \rho(P, \alpha)$ is a product of 3-point correlations functions on \mathbb{S}^2

- q → F_{P,α}(q) are the holomophic conformal blocks, q = (q₁,..., q_{3h-3+m}) plumbing (complex) coordinates on the moduli space M_{h,m} of Riemann surface of genus h = genus(M) with m marked points.
- $C_g > 0$ an explicit constant depending on choice of representative g in each conformal class.

Figure: The plumbed surfaces Σ_q with four pairs of pants $\mathcal{P}_1, \ldots, \mathcal{P}_4$ and six annuli $\mathbb{A}_{q_1}, \ldots, \mathbb{A}_{q_6}$

Figure: The plumbing with parameter $q = e^{-t+i\theta}$ of two pairs of pants, viewed as gluing an annulus $\mathbb{A}_q = \{z \in \mathbb{D} \mid |q| \le |z| \le 1\}$ with a twist of angle θ between the two pairs of pants. The length for the flat metric $|dz|^2/|z|^2$ of the annulus is t.

In terms of amplitudes: composition with $e^{-tH+i\Pi}$ where Π is generator of rotations $z \mapsto e^{i\theta}z$.

Example: torus 1 point

1-point function on torus $\mathbb{T}_{ au}^2=\mathbb{C}/(2\pi\mathbb{Z}+2\pi au\mathbb{Z})$, with $q=e^{2i\pi au}$

$$\langle V_{\alpha_1}(x_1) \rangle_{\mathbb{T}^2_{\tau}} = \frac{|q|^{-\frac{1+6Q^2}{12}}}{2\pi} \int_0^\infty C(Q+ip,\alpha_1,Q-ip)|q|^{-2\Delta_{Q+ip}}|\mathcal{F}_{p,\alpha_1}(q)|^2 dp$$

Remarks:

- first mathematical proof of the explicit expressions proposed by physicists (Knizhnik, Belavin, Sonoda, Polchinski, Teschner ...).
- the bootstrap formula depends on the chosen decomposition into pairs of pants, annuli with 1 marked point/insertion and disks with 1 or 2 marked points/insertions
- proves crossing symmetries: formulas for correlations functions given by bootstrap approach do not depend on the decomposition into geometric blocks (although conformal blocks do)
- implies convergence a.e. $P \in \mathbb{R}$ of conformal block series (this was an open problem)

$$\mathcal{F}_{\mathcal{P},\alpha}(q) = \sum_{k \in \mathbb{N}_0^{3h-3+n}} w_k(\alpha, p) q_1^{k_1} \dots q_{3h-3+n}^{k_{3h-3+n}}$$

for $q = (q_1, \ldots, q_{3h-3+n}) \in \mathbb{D}^{3h-3+n}$ Marden-Kra plumbing coordinates; here $w_k(\alpha, p)$ are representation theoretic constants depending only on Virasoro commutation relations.

Back to analysis: a (much simpler) toy model

Take the Schrödinger operator

$$H_{\mathrm{mod}} = \Delta_{\mathbb{R} imes \mathbb{S}^1} + e^{\gamma c} V = -\partial_c^2 - \partial_{\theta}^2 + e^{\gamma c} V(\theta)$$

on a cylinder $\mathbb{R}_c \times \mathbb{S}^1_{\theta}$, with $V \in L^{\infty}(\mathbb{S}^1)$ bounded below: $V(\theta) > \varepsilon > 0$. The potential $e^{\gamma c}$ is confining as $c \to \infty$ and decay at $c \to -\infty$:

Generalized eigenfunctions diagonalizing H_{mod} have the form (for $p \in \mathbb{R}, k \in \mathbb{Z}$, with $p^2 > k^2$)

$$egin{aligned} \Phi_{p,k}(c, heta)|_{\mathbb{R}_- imes\mathbb{S}^1} =& e^{ic\sqrt{p^2-k^2}}e^{ik heta} + \sum_{j\leq k}C_{jk}(p)e^{-ic\sqrt{p^2-j^2}}e^{ij heta} + r(c, heta) \ \Phi_{p,k}(c, heta)|_{\mathbb{R}_+ imes\mathbb{S}^1} \in L^2(\mathbb{R}_+ imes\mathbb{S}^1) \end{aligned}$$

for $r \in e^{-\gamma |c|} L^2$.

- They solve $(H_{
 m mod}-p^2)\Phi_{p,k}=0$
- $u = e^{ic\sqrt{p^2 k^2}}e^{ik\theta}$ is solution for the free operator $(-\partial_c^2 \partial_\theta^2 p^2)u = 0$
- $e^{ic\sqrt{p^2-k^2}}e^{ik\theta}$ is an incoming plane wave, $e^{-ic\sqrt{p^2-j^2}}e^{ij\theta}$ are outgoing plane waves
- $C_{jk}(p)$ = scattering/reflection coefficients

Tool for achieving this:

• prove that the resolvent defined for Im(p) > 0

$$R(p) := (H_{\rm mod} + p^2)^{-1} : L^2 \to L^2$$

admits an analytic continuation down to Im(p) = 0 as operator $e^{-\varepsilon |c|}L^2 \rightarrow e^{\varepsilon |c|}L^2$.

• Set $\Phi_{p,k}(c,\theta) = e^{ipc}e^{ik\theta} \mathbb{1}_{\mathbb{R}_-}(c) - R(p)(H_{\mathrm{mod}} - p^2)(e^{ipc}e^{ik\theta}\mathbb{1}_{\mathbb{R}_-}(c)).$

This is proved using parametrix $R_0(p)$

$$(H_{\text{mod}} + p^2)R_0(p) = \text{Id} + K(p)$$

with K(p) a compact operator on $e^{-\varepsilon |c|}L^2$, then use Fredholm theorem to invert Id + K(p).

Parametrix is $R_0(p) = R_0^+(p) + R_0^-(p)$ where

• $R_0^+(p)$ is the resolvent of $H_{\mathrm{mod},\mathbb{R}_+} = H_{\mathrm{mod}}$ acting on $c \in [0,\infty)$ with Dirichlet condition at c = 0

$$R_0^+(p) = (H_{ ext{mod},\mathbb{R}_+} - p^2)^{-1}$$

well-defined in $\text{Im}(p) \ge 0$ on L^2 outside discrete set on $i\mathbb{R}$ since this operator has discrete spectrum (confining potential).

• $R_0^-(p)$ is the resolvent of $H^0_{\text{mod},\mathbb{R}_-} := -\partial_c^2 - \partial_\theta^2$ acting on $c \in (-\infty, 0]$ with Dirichlet condition at c = 0

$$R_0^-(p) = (H^0_{\mathrm{mod},\mathbb{R}_-} - p^2)^{-1}$$

well-defined and explicit (using Fourier analysis), analytic up to $\text{Im} \ge 0$ on weighted spaces $e^{-\varepsilon |c|}L^2 \rightarrow e^{\varepsilon |c|}L^2$ (continuous spectrum).

Difficulties in the Liouville CFT case

- $V \in L^{2/\gamma^2 \varepsilon}$ is not bounded and is not bounded below by a positive constant.
- V is a measure when $\gamma > \sqrt{2}$
- $L^2(\mathbb{S}^1)$ is replaced by the Fock space $L^2(\Omega)$ (Ω has infinite dimension)
- the eigenfunctions h_{kl} of P are not bounded and their L^p norms for $p < \infty$ are not bounded uniformly in k, l
- even self-adjointness (domain issues) is not easy

To overcome this, need to use a combination of

- Probabilistic estimates (Feynmann-Kac representation of propagator $e^{-tH} = S(t)$)
- finite negative moments of GMC somehow replace $V > \varepsilon > 0$
- cutoff in frequency k, l and positivity of the operator V
- many tricky arguments.