Integrable systems in geometry and mathematical physics,
in memory of Boris Dubrovin

Geometry and
topological recursion Gaétan Borot
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In enumerative geometry of curves | string theory | random 2d geometry ...
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We want to compute F4  and better understand the algebraic structures

governing these computations, and their ubiquity. E.g.
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non-linear integrable PDEs |
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In enumerative geometry of curves | string theory | random 2d geometry ...

Compact oriented surface — quantities Fg, or (g,

genus g, n punctures/boundaries . ,
numeric geometrlc

H® (M, n) ® V&

XN
v Fun(J\/[gjn,V@m)

<~
integration

We want to compute F4  and better understand the algebraic structures
governing these computations, and their ubiquity. E.g.

mirror symmetry  Fg . = periods on X", X=algebraic variety

non-linear integrable PDEs o1
» for Zy =exp (Z Fg,n) € Funy (V)

4 g,n

linear PDEs «+— recursion on
Xgnl =2g-2+n

universal idea : cutting surfaces into smaller pieces /pasting



... > 10 years ago

1. Chekhov, Eynard, Orantin identified a universal recursive structure

governing the formal and asymptotic expansions of matrix integrals

1
d(M) = 5 —dM e NV

1 1
<T1‘X1_M---TrX —M>c zZNz_zg_“Fgln(xl,...,xn)
" g0

@ recursionon?2g-2+n

@ period computations on the spectral curve P(x,Fy1) =0

They called it topological recursion (TR)



.. > 10 years ago

embeddings of pairs of pants P — ¥, } / Diff® (£ )
1 g,mn

Terms <+— .
{such that 9,P =0:X4, and X, , — P is stable




... > 10 years ago

2. Mirzakhani theorem (07) : recursion for Weil-Petersson volumes of Mg, (L)

)

sin(7tv/2x)

(TRon y=

TV 2X



... > 10 years ago

2. Mirzakhani theorem (07) : recursion for Weil-Petersson volumes of Mg, (L)

)

sin(7tv/2x)

(TRon y=

TV 2X

3. Witten conjecture/Kontsevich + Dijkgraaf-Verlinde-Verlinde theorem (91)

n
: : 2k + 1)!!dy;
Virasoro constraints for F,, = E (J_ ]fl'“ll)]ﬁ“) | | | 11szlz =
ki, kn >0 N Mgn i1 Yy

(TR on x:y; )



... > 10 years ago

2. Mirzakhani theorem (07) : recursion for Weil-Petersson volumes of Mg, (L)

sin(7tv/2x) )

(TRon y=

TV 2X

3. Witten conjecture/Kontsevich + Dijkgraaf-Verlinde-Verlinde theorem (91)
n . ndu:
Virasoro constraints for Fg,, = Z (J_ kL '1|)]§“) H (2k; + 1)!'dy;
M

2ki+2
(TRon x = y; )

K1,k 0 gm i1 Y3

4. Remodeling the B-model (conjecture of Bouchard, Klemm, Marino, Pasquetti, 07)

TR on mirror curve P(e*,eY) =0 of a toricCY3 X
computes its open Gromov-Witten theory

= Bouchard-Marino conjecture (08)

TR on e* =ye ¥ computes simple Hurwitz numbers



... > 10 years ago

2. Mirzakhani theorem (07) : recursion for Weil-Petersson volumes of Mg, (L)

)

sin(7tv/2x)

(TRon y=

TV 2X

3. Witten conjecture/Kontsevich + Dijkgraaf-Verlinde-Verlinde theorem (91)

. . = (2ki + 1)!'dy;
Virasoro constraints for Fgn = ) (Jﬁ e -ll)]ﬁ“) 11 | ;Lkilz y

2 K1, kn =0 gm i1 Yi
(TR on x = = )

4. Remodeling the B-model (conjecture of Bouchard, Klemm, Marino, Pasquetti, 07)

TR on mirror curve P(e*,eY) =0 of a toricCY3 X
computes its open Gromov-Witten theory

= Bouchard-Marino conjecture (08)

TR on e* =ye ¥ computes simple Hurwitz numbers

5. Norbury-Scott conjecture: TRon x =e? +-e™Y
computes the (stationary) Gromov-Witten theory of CP?



... > 10 years ago

Why/How does TR appears in a given problem ?

I. Via analysis of functional relations

Schwinger-Dyson equations/ Tutte’s recursion on Feynman graphs (matrix models)
1,3, non-rigorous derivations for 4,5

Cut-and-join equations in Hurwitz theory
Bouchard-Marino conjecture proved by Eynard, Mulase, Safnuk (11)
More general Hurwitz theory ???

II. Via geometry

[solated example of Mirzakhani : recursive partition of unity
on Teichmiiller space, whose integration yields TR for volumes

III. Relation to Frobenius manifolds & Givental formalism in GW-theory ???



Nowadays: many ways to prove TR

I. Via analysis of Schwinger-Dyson equations

TR for large class of matrix models (multitrace, multicut) B, Eynard, Orantin 13, B. 15

Albeverio, Pastur, Shcherbina (01)

Existence of asymptotic expansions properly justified B, Guionnet, Kozlowski (11-15)

I’ Via analysis of cut-and-join equations/semi-infinite wedge formulas

Amsterdam /Moscow school, Bouchard, Mulase, Norbury, Lewanski, Do, Karev, B., Moskowsky (2011-2021)
Alexandrov, Chapuy, Eynard, Harnad

I”. Reconstruction of formal WKB expansions

Bergere, Eynard, B, Iwaki, Marchal, Dumitrescu, Mulase, Orantin, Garcia-Failde (2009-...)

II. Via geometric recursions Andersen, B, Orantin (17-...)

ITI. [ Relation to Frobenius manifolds & Givental formalism & CohFTs
Dunin-Barkowski, Orantin, Spitz, Shadrin, Norbury, Popolitov (12-16)

Intersection theory on M ,,
\ Eynard (12) + ...

IV. Representation theory of VOAs
Orantin, Kostov (2010) Milanov (2015), B., Bouchard, Chidambaram, Creutzig, Noshchenko (2017-...)



Nowadays: many ways to prove TR

I. Via analysis of Schwinger-Dyson equations

TR for large N expansion of SU(N) Chern-Simons theory

I’ Via analysis of cut-and-join equations/semi-infinite wedge formulas

For all weighted double Hurwitz numbers and spin Hurwitz numbers

I”. Reconstruction of formal WKB expansions

TR for Painleve tau-functions, for large class of Hurwitz problems, ...

II. Via geometric recursions

III. [ Relation to Frobenius manifolds/Givental formalism/CohFTs
Proof of Norbury-Scott conjecture

Intersection theory on M, ,,

+ Proof of remodeling B-model conjecture

IV. Representation theory of VOAs



I. Via analysis of Schwinger-Dyson equations

TR for large N expansion of SU(N) Chern-Simons theory

I’ Via analysis of cut-and-join equations/semi-infinite wedge formulas

For all weighted double Hurwitz numbers and spin Hurwitz numbers

I”. Reconstruction of formal WKB expansions

TR for Painleve tau-functions, for large class of Hurwitz problems, ...

II. Via geometric recursions

ITII. [ Relation to Frobenius manifolds/Givental formalism/CohFTs
{ Proof of Norbury-Scott conjecture, of the remodeling B-model conjecture

. Intersection theory on M, ,

IV. Representation theory of VOAs
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e Mivzadkhani idemtitv

e Generalisations and applications



1. Mirzakhani identity

e X compact oriented smooth surface, genus g, n boundaries

hyperboli tri
@ s = Teichmiiller space = { yperbolic metrics on } / Diffy (X, 0X)

with geodesic boundaries

@ Ms(L)=Tx(L)/T¢ =modulispace of bordered Riemann surfaces
with fixed boundary lengths L € R

equipped with Lwp = Weil-Petersson (symplectic) volume form

P { isotopy class of P — X with labeled boundaries }
Z p—

®
such that 0;P =0,X and X — P is stable
— (I_Illzz T?) L (PQ)):
10 N

O T




1. Mirzakhani identity

1
Bri(Li, Ly, ) = o= (F(Ly + Ly = €) + F(Ly = Ly — ) = F(=L1 + Ly — ) = F(=Ly — Ly — 0))
1
1
Cni(Ly, 6,4) = —(F(Ly £ =) = F(=Ly —{ — ') with F(z) =2 In(1 + €"/?)

1

Theorem (Mirzakhani, 07) For 29 —2+n >2 and any o € Ty

n . 1 ~
(@) 1=)Y Bu(lo(0P)) +5 ) Cuml(ls(0P))
m=2 [PleP [PleP?
(b)  Topological recursion for the WP volumes Terms +— Ps/Diff (finite)

Von(L) = Y J 0Byt (L1, L, €) Vg 1(6, L\ {Lin})

m=2 "R+

1
+§J dede’ee’cM(Ll,e,e’)(vg1,n+1(e,e’,L)+ > Vh,1+|;(€,J)Vh/,1+|y(2’,1’))
R

- JUJ =L\{L1}
h+h’=g




1. Mirzakhani identity

Idea of the proof Let 0 € 7x

r € 01X ~ 7Yz geodesicissuing from x L 0:%, stopped at first intersection point

~ [P;] € Py determined by tubular neighboorhood of 913 U7,

when the geodesic does not accumulate on «a C 3

7 &
&



1. Mirzakhani identity

Idea of the proof (continued)

We have an almost everywhere defined map 01% --» Py

1
1= Uy (01Y) [ ]26;9 EU({CE e | [P]= [P]})

Given |P], one can identify the set of points x € 0;% intrinsically

and compute their measure by hyperbolic trigonometry

Key for integration is that Fenchel-Nielsen coordinates are
- compatible with cutting/gluing
- canonical for Weil-Petersson symplectic form (Wolpert formula)



2. TR from geometric recursion

@ Initialdata A,B,Ce C°(Tp)=C’(R3) and DeC’(Tr) T= O@
X(Li, L, Lg) = X(Ly, L3, Lp) for X=A,C
® |X| — ]_ QP — A QT — D
union Qs s, (01,02) = Q5 (01)Q5,(02)
Xl = 2 Qs (o) =) B({;(0P))Qs_p(ols_p) + 3 C(l5(dP)) Qs _p(ols_p)
m=2[p]cpt [PleP?

Theorem Andersen B Orantin 17

If A,B,C,D satisfy some (explicit) bounds

S Q5 € CTy) is a well-defined and invariant under rza
(absolute convergence on any compact)



2. TR from geometric recursion

—

GR formula Qs(o)=)Y Y B({;(dP))Qs p(ols_p)+ 1 Z C(ls(0P))Qs_p(olz_p)
b=2 [PleP} [PleP?

Theorem Andersen B Orantin 17

Under assumptions, L — Q5 & CY(T5) is well-defined, an—invariant

and Fg (L) :J Qs .duwp(o) satisfies TR
Mg (L)

n o,
Fon(L) =) | deeB(Ly, L, &) Fgn_1(LL\{Lm})
m=2"R+
L ee’ ! ! Y
+§ . déde’ ee'C(Ly, ¢, ¢ )(Fg_LnH(E,@ ,L) + Z Froioy (& DFnoasy (2,7 ))
N JuJ =L\{Ly}
h+h’'=g

Key for integration is that Fenchel-Nielsen coordinates are
- compatible with cutting/gluing
- canonical for Weil-Petersson symplectic form

Sees TR as a shadow (after integration over moduli) of finer geometric recursions



3. Applications

Generalization of Mirzakhani identities

Mz = {primitive multicurves on X }

Theorem Andersen B Orantin 18

For any test function f € CY(R.) with fast decay

Z H (¢ is computed by GR for twisted initial data

YEM’ cemy(y
AM](Ly, Ly, L3) = AM (L1,L2,L3)
BM[f](Ly, Ly, €) = BM(L;, Ly, ) + f(O)AM(Ly, Lo, £)
CMIf(Ly,€,¢) = CM(Ly, 0, ") + f(O)BM(Ly, €, €") + f(¢)BM(Ly, 2, 0) + f(0)f(¢/)AM(Ly, €, ¢")
DMIf1(0) = 2, gimple € (L1, Lo (V), Lo () + f(Le (V) ) AM (L1, 6 (), Lo (V)




3. Applications

Idea of the proof same in hyperbolic or combinatorial setting
-2 1l
"YQM/ CET(O
> use Mirzakhani identity
ZHf())ZXpGIZP
YEM/ cempy(y PlePs v

-2 2

PlePs YEM;: P

and collect the weights

A:Q(),gEl




3. Applications

Theorem Andersen B Orantin 18

For any test function f € C°(R ) with fast decay

Z H (L is computed by GR for twisted initial data

YEME cemp(y
AM](Ly, Ly, L3) = AM (L1,L2,L3)
BM[f](Ly, Lo, ) = BM(Ly, Ly, €) + f(O)AM(Ly, Ly, 0)
CMIf(Ly,€,¢) = CM(Ly, 0, ") + f(O)BM(Ly,€,€¢/) + (£ )BM(Ly, 2, 0) + f(0)f(¢/)AM(Ly, €, ")
DMf1(0) = 2, gimple €V (L1, Lo (V), Lo (V) + f(Le (V) ) AM (L, 6 (), Lo (V)

Consequences
TR computes WP-averages of multicurve statistics

TR computes Masur-Veech volumes of moduli of quadratic differentials

Andersen, B., Charbonnier, Delecroix, Giacchetto, Lewanski, Wheeler 19



4. Combinatorial geometry

reomb _ { embedded metric ribbon graphs G — Z}
= s.t. X retracts onto G, up to isotopy

is homeomorphic to Jx
but a different (symplectic) geometry than WP geometry

1
. comb _ - ,
Kontsevich 2-form on 75 """ (L) WK = 5 ; Z dl. N dl,
M2 - invariant o
Associated volume form UK

nor2
Combinatorial volumes exp ( Z % ¢i>

1=1

dug = J_

JM@O}plb(L) Mg n

Kontsevich 91, Zvonkine 03



4. Combinatorial geometry

reomb _ { embedded metric ribbon graphs G — X
= Y retracts onto G

} homeo. to Ty

but different (symplectic) geometry : Kontsevich ukx vs. Weil-Petersson pwp

n L2
Kontsevich 91 J dug = J_ exp (Z 71 1|)i>
Meomb (L) M g

Zvonkine 03 i=1

Theorem Andersen B Charbonnier Giacchetto Lewanski Wheeler 21

There are combinatorial FN coordinates T&™ — (RT x R)?973t™ x R™

Image is open dense with zero measure complement

WK = Z?i{3+n d{; Adty onlocus with fixed boundary lengths

One can set up geometric recursion to get Qs € CO(TE™P)

and Fgn(L) = Qs dux satisty TR

chcgmb(L)



4. Combinatorial geometry

Andersen B Charbonnier Giacchetto Lewanski Wheeler 21

Most tools of hyperbolic geometry have an analogue in ggomb

Theorem (combinatorial Mirzakhani-McShane identity)

(
B* (L, Lo, ):QLl(U—l Ly— 0y —[-Li+Lo—04 + L + Ly —04)
CH(Ly, 2,0 ):%U—l—E—m

(

DXG)= ) CX(le((Z-v))
Yy simple
TR
- l \
integration 2
QK =1 ° v Fonll) = fr, oxp (X1, 5bs)

Fully geometric proof of Virasoro constraints of Witten’s conjecture
(bypassing matrix models/integrability)



4. Combinatorial geometry

Idea of proof Let G ¢ T5omb
We shoot geodesics, but the starting point is already the ending point (on the graph)

1 1
Write 1= (e(0) Z lg(e) = =) Z l6(a Z Z l6(a)

e—edge & arc PlEPy a€Q@™H(P))
around 01X (dual edge)

Partition the sum according to the isotopy class of pair of pants Q(Py) € Px
determined by the tubular neighborhood of 91X U «

(870)

O X




5. Future directions

® Differential-geometric approach to Witten r-spin conjecture is missing

Construction of Witten r-spin class Polishchuk, Vaintrob 01, Chiodo 02
Proof of Witten r-spin conjecture (rKdV) Faber, Shadrin, Zvonkine 06
Proof of W-constraints/ TR Milanov 16

® Analogue for surfaces with corners ? in progress, Andersen, B., Orantin
What can be hoped for :

- open Mirzakhani identity
- twisting: geometric recursion for statistics of length spectrum

- via Selberg trace formula: geometric recursion for statistics of Laplace spectrum

- integration over the open moduli space



Representation theovy

0§ VOAS

e Aivy Structures §vom VOAS
e SuperSymmetvic qauge theovies

e IntevrsSection theowj



1. Airy structures

7% = Clll{xi,hdy, i€I)  degx;=1 degh=2 basis (e1)ic1

eraded algebra of differential operators on V (dual) linear coordinates (xi)ie

A quantum Airy structure is a linear map £ : V — 2 such that

® L(ei) :haxi —|—O(2)
e [£.L]Choh. L

Theorem (Kontsevich, Soibelman 17)

For a given quantum Airy structure, there exists a unique

h9 .
F = Z — Fgmn Fgn € Sym™V

2g—24+m>0
n>0

satisfying Vv eV L(v)-eh =0




1. Aj t t Kontsevich Soibelman 17
. ll'y structures Andersen B Chekhov Orantin 17

initial data (A, B, C,D) Topological recursion (TR) + Fyn € Sym™V*

Degree 2 case  L(e;) =hdy, — ) (3AL yxaxp + Bh pxa My, + 5Ch , 1?05, 0y, ) — AD!
a,b

x| =1 Fog = A Fi1 =D

|X| = 2 Fg,n — Z

Identifies the minimal algebraic conditions for the emergence of TR



1. Airy structures

e (Quantum) Airy structures are not easy to find !
e Large abelian group of symmetries (containing Givental group)

Eg U = eXp(%U«a,b axa axb)

L — UL U™ . oF/M s qeF/

Xi — X{ + Ui q haxa

Alulj, = Aj Fgn — sumover M% /T2
Blull,, = B!, +uj AL, (stable graphs)
Clulj e = G +1j.aBax +taBaj + 145 0t b Ag b vertex weights  Fp (v i (v)

Dul' =D'+ L ua bALy edge weights u

2
@QQ

Twisting is a geometric lift of this symmetry S



2. Construction from VOAs B Bouchard Chidambaram Creutzig Noshchenko 18

Vertex operator algebra (2d chiral CFT)
+ twist by an automorphism o ~» quantum Airy structures
+ representation in DY

Fundamental example W(gl, ). (= Virasoro for r = 2)

generators Hy keZ «ae{l,...,1} admit representations in DI, (2]

automorphisms c¢=1 &y X 2 (quantum Miura transform)
¢ # T 7y

With help of representation theory, one can find subsets of modes

satisfying the (tricky) ideal condition [J{, ] C hW(gl,) - I

By suitable translations xi — xi + tx, one can get the degree condition

There is a tension between choice of ideal vs. choice of translation



2. Construction from VOAs

Fundamental example W/(gl,),

generators Hi keZ ie{l,...,r} have representation in iDhr[[Z”

Theorem B Bouchard Chidambaram Creutzig Noshchenko 18

For ¢ =7, twistby o= (1---1), s e {l,...,71+ 1} such that r = £+1 mod s
H={Hi: rk+s(i—1)+6i; >0} withtranslation xs — x5 —1/s

— free energies Fy7) computed by TR

Likewise with 0= (12 ---r—1) € &, and s|r

— free energies Fg’}f) computed by TR

General twist 0 € &, : many more (almost classified)
B Kramer Schiiler 20

Untwisted cases ?



3. Spectral curve description

A spectral curve is a branched cover C —»C together with a = zeroes of dx

y:C—C meromorphic, and wp 2 € HO(K§2(2A))62
assuming Y —y(e) ~ (x — x(a))*=/ T

with T4 = =£1 mod s4 and S« €{1,...,74 +1}

> wg,n(le . -/Zn) — Z Fg,n(eil Q- ein) H dgia (Zi)
Eynard-Orantin TR i1, in a=1

by computations of generating series (meromorphic differential on C™ )

~

periods on C

\. quantum Airy structure on V = ®yeq Dr>o0 (C-eoc,k

Kontsevich Soibelman 17 based on ©W(gl. )
Betal. 17, 18, 20 )



3. Spectral curve description

® The theory of Airy structures proves it is well-defined, e.g. F,,, symmetric

(previously only known for 14 = 2)

— Definition of B-model for 1d Landau-Ginzburg model

e ... Butalso gives obstructions on local behavior (i.e. (S, Tw))

for well-definition /symmetry

® [Extended to a description of admissible singular curves B Kramer Schiiler 20

?? For each admissible curve: describe Frobenius structure on the deformation space

?? What is special geometrically for non-admissible curves

If there is an Frobenius structure, it cannot be defined as in Dubrovin theory
for Hurwitz spaces



4. 4d N = 2 supersymmetric gauge theory

Donaldson 84

[ Moduli space of anti-self-dual ]
o M= 4 SU(r) instantons on S* o~

Algebraic SL(r, C)-bundles on Pz}
framed at oo, instanton # =d

with ¢, = d + trivialisation on 1

.

In N = 2 supersymmetric pure gauge theory with equivariant parmeters €1, €2, Q)i

for the action of G = (C*)*x Cartan torus, the partition function reduces to

“integrals” over Mg

h = —€1€r — 0
_ x=¢€t+e el
INek () = exp <Z hITIT (A, oc)) 1 .2
g>0 A coupling / energy scale

e Mathematically:
|1d> c IHE (M%) > |1> — Zd}O AdT |1d> ~ ZNek(/\) — <1|1>
Fundamental class Gaiotto vector Nekrasov partition function

of a (partial) compactif.
Uhlenbeck, Donaldson, ...



4. 4d N = 2 supersymmetric gauge theory

Alday-Gaiotto-Tachikawa conjectures : relations to W(sl,.).- conformal blocks

c=r—1—r(r*—=1Dh 1a?
Okounkov, Maulik 12

The mathematical theorem incarnating this is Schiffmann, Vasserot 13
(here for gl,) Braverman, Finkelberg, Nakajima 14

o H = @ IH¢ (/Z\Z%) is a Verma module for W(gl.),. (highest weight vector [0) )
d>0

e Wil) =561, iA™ 1) forall ie{l,...,1}and k >0 (Whittaker vector)

® An explicit description of the intersection pairing in H

Wi canbe represented as differential operators € D%

with V = C"[[Z]]

 —



4. 4d N = 2 supersymmetric gauge theory

|
>)

Theorem 6 B Bouchard Chidambaram Creutzig 21 A

(Wi —RIAS; . 811) 20 is a quantum Airy structure

hg—l ~
and its partition functionis |1) = exp ( Z Fg/,},g) c Funs (V)

n!
gesN, n>0
It is computed by TR associated to
eriods of algebraic
® the (unramified) spectral curve [Tooqi(y— %) =0 f . 5
unctions
if e1+€=0
® the non-commutative spectral curve [ 15— (x0x — %) periods from solutions
if e1+e#0 (regular D-module on x € P") of the D-module
, (new construction of TR)
(refined)

For r =2 : Eynard et al. 13-19



5. Intersection theory

Virasoro constraints for GW(pt) — Witten’s conjecture

correspond to the Airy structure (r,s) = (3,2)

TR on the spectral curve x =y* computes

(2ki + 1)!dz;4
w(g%ir%) (le ceey Zn) — Z J_ ) LI) H 2k1—|—2
gn

dy,...,dn =0

is the tip of an iceberg ...



5. Intersection theory

Wgn TR on spectral curve  Partition function
[ﬂﬁg,n X = UZ F(32) ... Kontsevich 92
Witten r-spin x =y" Flrr+1) ... Milanov 16
p*Ctop(—R'Tt*L) =y plrr—1) r =2 : Norbury 17
from m_l/ T =Y Bouchard, B., Chidambaram,
gn Chiodo, Tessler, Norbury; ...
Qrs) D TS yT = 1 (1,s) BBCCN 18
gm e Y F B Kramer Schiiler 20
open r-spin
» r =2 : Alexandrov 16
Pandharipande all r : conjecture BBCCN 18

Solomon, Tessler 15- ...

Expectation

To each Airy structure based on a VOA computes

intersection theory of a class Q4 n onmoduli of curves



5. Intersection theory

Conjectural (r,s) class
For s€{l,...,r—1} suchthat r=+1 mod s

T%f)(a) S H'(mgln) indexed by a€{l,...,7}" such that

\@/‘\

there exists w

= = (rdi + i)' dz,
( s ) — i 1
® wgtrf (z1,...,2Zn) = Z <J Hll) ) H rd1+a1+1
dy,...d, >0 Mgn i=1 —1 24
1<ayq,...,an <1
S = q
° wg;f) (a) has pure dimension ;(29 2+n) Z Tl
1=1
® [tisamodified CohFT (Norbury)
W T (Wng) (a)) = W9,n+1(s, a) under forgetful map 7 : Mgnt+1 = Mgn
- 1 + 7T TZ _ 1
® Initial values wégs)(a) — T6a1+a2+a3,5 W&'S)(a) - Tés,atl)l

@ The partition function is a tau-function of r-KdV



5. Intersection theory

Theorem Eynard 12 | Chekhov Norbury 17 { B Kramer Schiiler 20 modulo existence of

For any smooth admissible spectral curve can be constructed wgn € H*(Mgn) @ A*®"

with A = span(ys = thimble for x : C — C} such that

n W (@T‘_ e )
" ... wix(zi) _ C . J gm i=1 Y &4
Jziem Wonlz He Q_{ " )> M I — iy

gn

® Givental group C {symmetries of Airy structures}

= {deformation of spectral curves respecting local behavior}

— retrieves TR for semisimple CohFTs of Dunin-Barkowski, Orantin, Shadrin, Spitz 12

for smooth spectral curves with simple ramifications

Relies on Teleman’s classification of semisimple CohFTs

® Many applications (e.g. ELSV-like formulas in Hurwitz theory)



6. Open problem

Establish a general picture :

(Equivariant) LG potential Fan-Jarvis-Ruan-Witten theories
. . . . . —>
with isolated critical point (generalisation of Witten r-spin classes)
. for ADE
| ;

VOA + twisted representation <«—— Integrable hierarchies (Drinfeld-Sokoloy, ...)
+ ideal of constraints

i.e. Enlarge our understanding of building blocks for topological field theories
—- thanks to symmetries, intersection-theoretic representations of TR correlators
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