Bilinear discretization of quadratic vector fields: integrability and geometry

Yuri B. Suris

(Technische Universität Berlin)

HU Seminar "Algebra, Geometry and Physics" Berlin, 27.04.2021

Part 1. Generalities

The problem of integrable discretization. Hamiltonian approach (Birkhäuser, 2003)

Consider a completely integrable flow

$$\dot{x} = f(x) = \{H, x\} \tag{1}$$

with a Hamilton function *H* on a Poisson manifold \mathcal{P} with a Poisson bracket $\{\cdot, \cdot\}$. Thus, flow (1) possesses sufficiently many functionally independent integrals $I_k(x)$ in involution.

The problem of integrable discretization: find a family of diffeomorphisms $\mathcal{P} \rightarrow \mathcal{P}$,

$$\widetilde{x} = \Phi(x; \epsilon),$$
 (2)

depending smoothly on a small parameter $\epsilon > 0$, with the following properties:

1. The maps (2) approximate the flow (1):

$$\Phi(x;\epsilon) = x + \epsilon f(x) + O(\epsilon^2).$$

- 2. The maps (2) are *Poisson* w. r. t. the bracket $\{\cdot, \cdot\}$ or some its deformation $\{\cdot, \cdot\}_{\epsilon} = \{\cdot, \cdot\} + O(\epsilon)$.
- 3. The maps (2) are *integrable*, i.e. possess the necessary number of independent integrals in involution, $I_k(x; \epsilon) = I_k(x) + O(\epsilon)$.

While integrable lattice systems (like Toda or Volterra lattices) can be discretized in a systematic way (based, e.g., on the *r*-matrix structure), there is no systematic way to obtain *decent* integrable discretizations for integrable systems of classical mechanics.

Missing in the book: Hirota-Kimura discretizations

- R.Hirota, K.Kimura. *Discretization of the Euler top.* J. Phys. Soc. Japan 69 (2000) 627–630,
- K.Kimura, R.Hirota. Discretization of the Lagrange top. J. Phys. Soc. Japan 69 (2000) 3193–3199.

Reasons for this omission: discretization of the Euler top seemed to be an isolated curiosity; discretization of the Lagrange top seemed to be completely incomprehensible, if not even wrong.

Renewed interest stimulated by a talk by T. Ratiu at the Oberwolfach Workshop "Geometric Integration", March 2006, who claimed that HK-type discretizations for the Clebsch system and for the Kovalevsky top are also integrable.

Hirota-Kimura or Kahan?

 W. Kahan. Unconventional numerical methods for trajectory calculations (Unpublished lecture notes, 1993).

$$\dot{x} = Q(x) + Bx + c \quad \rightsquigarrow \quad (\widetilde{x} - x)/\epsilon = Q(x, \widetilde{x}) + B(x + \widetilde{x})/2 + c,$$

where $B \in \mathbb{R}^{n \times n}$, $c \in \mathbb{R}^{n}$, each component of $Q : \mathbb{R}^{n} \to \mathbb{R}^{n}$ is a *quadratic* form, and $Q(x, \tilde{x}) = (Q(x + \tilde{x}) - Q(x) - Q(\tilde{x}))/2$ is the corresponding symmetric *bilinear* function. Thus,

$$\dot{x}_k \rightsquigarrow (\widetilde{x}_k - x_k)/\epsilon, \quad x_k^2 \rightsquigarrow x_k \widetilde{x}_k, \quad x_j x_k \rightsquigarrow (x_j \widetilde{x}_k + \widetilde{x}_j x_k)/2.$$

Linear w.r.t. \tilde{x} , therefore defines a *rational* map $\tilde{x} = \Phi_f(x, \epsilon)$. Obvious symmetry: $x \leftrightarrow \tilde{x}$, $\epsilon \mapsto -\epsilon$, therefore Φ_f *reversible*:

$$\Phi_f^{-1}(x,\epsilon) = \Phi_f(x,-\epsilon).$$

In particular, Φ_f is *birational*, and deg $\Phi_f = \deg \Phi_f^{-1} = n$.

Kahan's discretization for the Lotka-Volterra system:

Explicitly:

$$\begin{cases} \widetilde{x} = x \frac{(1+\epsilon)^2 - \epsilon(1+\epsilon)x - \epsilon(1-\epsilon)y}{1-\epsilon^2 - \epsilon(1-\epsilon)x + \epsilon(1+\epsilon)y}, \\ \widetilde{y} = y \frac{(1-\epsilon)^2 + \epsilon(1+\epsilon)x + \epsilon(1-\epsilon)y}{1-\epsilon^2 - \epsilon(1-\epsilon)x + \epsilon(1+\epsilon)y}. \end{cases}$$

Left: three orbits of Kahan's discretization with $\epsilon = 0.1$, right: one orbit of the explicit Euler with $\epsilon = 0.01$.

► J.M. Sanz-Serna. An unconventional symplectic integrator of W.Kahan. Applied Numer. Math. 1994, **16**, 245–250.

A sort of an explanation of a non-spiralling behavior: Kahan's discretization is symplectic w.r.t. $dx \wedge dy/(xy)$.

Hirota-Kimura's discrete time Euler top

Features:

• Equations are linear w.r.t. $\tilde{x} = (\tilde{x}_1, \tilde{x}_2, \tilde{x}_3)^T$:

$$A(x,\epsilon)\widetilde{x} = x, \qquad A(x,\epsilon) = \begin{pmatrix} 1 & -\epsilon\alpha_1 x_3 & -\epsilon\alpha_1 x_2 \\ -\epsilon\alpha_2 x_3 & 1 & -\epsilon\alpha_2 x_1 \\ -\epsilon\alpha_3 x_2 & -\epsilon\alpha_3 x_1 & 1 \end{pmatrix},$$

result in a rational map, which is *reversible* (therefore birational):

$$\widetilde{x} = \Phi(x,\epsilon) = A^{-1}(x,\epsilon)x, \quad \Phi^{-1}(x,\epsilon) = \Phi(x,-\epsilon).$$

Explicit formulas:

$$\begin{cases} \widetilde{x}_1 = \frac{x_1 + 2\epsilon\alpha_1 x_2 x_3 + \epsilon^2 x_1 (-\alpha_2 \alpha_3 x_1^2 + \alpha_3 \alpha_1 x_2^2 + \alpha_1 \alpha_2 x_3^2)}{\Delta(x, \epsilon)} \\ \widetilde{x}_2 = \frac{x_2 + 2\epsilon\alpha_2 x_3 x_1 + \epsilon^2 x_2 (\alpha_2 \alpha_3 x_1^2 - \alpha_3 \alpha_1 x_2^2 + \alpha_1 \alpha_2 x_3^2)}{\Delta(x, \epsilon)}, \\ \widetilde{x}_3 = \frac{x_3 + 2\epsilon\alpha_3 x_1 x_2 + \epsilon^2 x_3 (\alpha_2 \alpha_3 x_1^2 + \alpha_3 \alpha_1 x_2^2 - \alpha_1 \alpha_2 x_3^2)}{\Delta(x, \epsilon)}, \end{cases}$$

,

where $\Delta(x, \epsilon) = \det A(x, \epsilon)$

$$= 1 - \epsilon^2 (\alpha_2 \alpha_3 x_1^2 + \alpha_3 \alpha_1 x_2^2 + \alpha_1 \alpha_2 x_3^2) - 2\epsilon^3 \alpha_1 \alpha_2 \alpha_3 x_1 x_2 x_3.$$

Two independent integrals:

$$I_1(x,\epsilon) = \frac{1-\epsilon^2\alpha_2\alpha_3x_1^2}{1-\epsilon^2\alpha_3\alpha_1x_2^2}, \quad I_2(x,\epsilon) = \frac{1-\epsilon^2\alpha_3\alpha_1x_2^2}{1-\epsilon^2\alpha_1\alpha_2x_3^2}.$$

Invariant volume form:

$$\omega = rac{dx_1 \wedge dx_2 \wedge dx_3}{\phi(x)}, \quad \phi(x) = 1 - \epsilon^2 \alpha_i \alpha_j x_k^2$$

and bi-Hamiltonian structure found in:

 M. Petrera, Yu. S. On the Hamiltonian structure of the Hirota-Kimura discretization of the Euler top. Math. Nachr., 2010, 283, 1654–1663.

Hirota-Kimura's discrete time Lagrange top

Equations of motion of the Lagrange top:

$$\dot{m}_1 = (\alpha - 1)m_2m_3 + \gamma p_2, \dot{m}_2 = (1 - \alpha)m_1m_3 - \gamma p_1, \dot{m}_3 = 0, \dot{p}_1 = \alpha p_2m_3 - p_3m_2, \dot{p}_2 = p_3m_1 - \alpha p_1m_3, \dot{p}_3 = p_1m_2 - p_2m_1.$$

It is Hamiltonian w.r.t. Lie-Poisson bracket of e(3), has four functionally independent integrals in involution: two Casimir functions,

$$C_1 = p_1^2 + p_2^2 + p_3^2, \quad C_2 = m_1 p_1 + m_2 p_2 + m_3 p_3,$$

the Hamilton function, and the (trivial) "fourth integral",

$$H_1 = \frac{1}{2}(m_1^2 + m_2^2 + \alpha m_3^2) + \gamma p_3, \quad H_2 = m_3.$$

Discretization:

$$\begin{split} \widetilde{m}_1 - m_1 &= \epsilon(\alpha - 1)(\widetilde{m}_2 m_3 + m_2 \widetilde{m}_3) + \epsilon \gamma(p_2 + \widetilde{p}_2), \\ \widetilde{m}_2 - m_2 &= \epsilon(1 - \alpha)(\widetilde{m}_1 m_3 + m_1 \widetilde{m}_3) - \epsilon \gamma(p_1 + \widetilde{p}_1), \\ \widetilde{m}_3 - m_3 &= 0, \\ \widetilde{p}_1 - p_1 &= \epsilon \alpha(p_2 \widetilde{m}_3 + \widetilde{p}_2 m_3) - \epsilon(p_3 \widetilde{m}_2 + \widetilde{p}_3 m_2), \\ \widetilde{p}_2 - p_2 &= \epsilon(p_3 \widetilde{m}_1 + \widetilde{p}_3 m_1) - \epsilon \alpha(p_1 \widetilde{m}_3 + \widetilde{p}_1 m_3), \\ \widetilde{p}_3 - p_3 &= \epsilon(p_1 \widetilde{m}_2 + \widetilde{p}_1 m_2 - p_2 \widetilde{m}_1 - \widetilde{p}_2 m_1). \end{split}$$

As usual, get an explicit birational map $(\tilde{m}, \tilde{p}) = \Phi(m, p, \epsilon)$.

Trivial conserved quantity $m_3 = \text{const.}$ Very difficult to find any further conserved quantity!

Hirota-Kimura's method for finding integrals

Incredible claim by HK: for any initial point, there exist $A, B, C \in \mathbb{R}$ such that

$$A(m_1^2 + m_2^2) + Bp_3^2 + Cp_3 = 1$$

along the orbit $\Phi^i(p, m, \epsilon)$, $i \in \mathbb{Z}$.

How one could check this? Solve the system for the unknowns A, B, C for i = -1, 0, 1:

$$\left\{ \begin{array}{l} A(\widetilde{m}_{1}^{2}+\widetilde{m}_{2}^{2})+B\widetilde{p}_{3}^{2}+C\widetilde{p}_{3}=1,\\ A(m_{1}^{2}+m_{2}^{2})+Bp_{3}^{2}+Cp_{3}=1,\\ A(\widetilde{m}_{1}^{2}+\widetilde{m}_{2}^{2})+B\widetilde{p}_{3}^{2}+C\widetilde{p}_{3}=1 \end{array} \right.$$

with $(\tilde{m}, \tilde{p}) = \Phi(m, p, \epsilon)$ and $(m, p) = \Phi^{-1}(m, p, \epsilon)$. Then check that $A, B, C = A, B, C(m, p, \epsilon)$ are conserved quantities.

Why should this work???

Definition. For a given bijective map $\Phi : \mathbb{R}^n \to \mathbb{R}^n$, a set of functions $\Psi = (\psi_1, \dots, \psi_\ell)$, linearly independent over \mathbb{R} , is called a **HK-set**, if for every $x_0 \in \mathbb{R}^n$ there exists a vector $c = (c_1, \dots, c_\ell) \neq 0$, $c = c(x_0)$, such that

 $c_1\psi_1(\Phi^i(x_0))+\ldots+c_\ell\psi_\ell(\Phi^i(x_0))=0\quad\forall i\in\mathbb{Z}.$

For a given $x_0 \in \mathbb{R}^n$, the set $K_{\Psi}(x_0)$ of all vectors $c(x_0) \in \mathbb{R}^{\ell}$ with this property is called the null-space of the HK-set Ψ (at the point x_0). This is clearly a vector space.

Dynamical consequence. Existence of a HK-set Ψ with dim $K_{\Psi}(x_0) = d$ confines orbits of Φ to (n - d)-dimensional invariant sets (similarly to the presence of *d* integrals).

Proposition. If Ψ is a HK-set for a map Φ with a *d*-dimensional null space then $K_{\Psi}(\Phi(x_0)) = K_{\Psi}(x_0)$, a $Gr(d, \ell)$ -valued integral.

Its Plücker coordinates are scalar integrals.

The most useful particular case:

Corollary. Let Ψ be a HK-set for Φ with dim $K_{\Psi}(x_0) = 1$ for all $x_0 \in \mathbb{R}^n$. Let $K_{\Psi}(x_0) = [c_1(x_0) : \ldots : c_{\ell}(x_0)] \in \mathbb{RP}^{\ell-1}$. Then the functions c_j/c_k are integrals of motion for Φ .

The number of functionally independent integrals among them varies in examples (sometimes just = 1 and sometimes > 1).

Results by Hirota and Kimura in the Lagrange top case:

Theorem. The three sets of functions,

$$\begin{array}{rcl} \Psi_1 &=& (m_1^2+m_2^2,\,p_3^2,\,p_3,\,1),\\ \Psi_2 &=& (m_1p_1+m_2p_2,\,p_3^2,\,p_3,\,1),\\ \Psi_3 &=& (p_1^2+p_2^2,\,p_3^2,\,p_3,\,1), \end{array}$$

are HK-sets for the discrete time Lagrange top with one-dimensional null-spaces, each producing one independent integral.

It follows that any orbit lies on a two-dimensional surface in \mathbb{R}^6 which is intersection of three quadrics and a hyperplane $m_3 = \text{const}$.

Theorem. The functions

$$\Gamma = (\widetilde{m}_1 p_1 - m_1 \widetilde{p}_1, \, \widetilde{m}_2 p_2 - m_2 \widetilde{p}_2, \, \widetilde{m}_3 p_3 - m_3 \widetilde{p}_3)$$

build a HK-set for the discrete time Lagrange top with one-dimensional null-space $K_{\Gamma}(x) = [1 : 1 : J]$,

$$J = \frac{(2\alpha - 1) + \epsilon^2(\alpha - 1)(m_1^2 + m_2^2) + \epsilon^2\gamma(m_1p_1 + m_2p_2)/m_3}{1 + \epsilon^2\alpha(1 - \alpha)m_3^2 - \epsilon^2\gamma p_3}$$

Theorem. The discrete time Lagrange top possesses an invariant volume form:

$$\Phi^*\omega = \omega, \quad \omega = rac{dm_1 \wedge dm_2 \wedge dm_3 \wedge dp_1 \wedge dp_2 \wedge dp_3}{\Delta(m,p)},$$

where

$$\Delta = 1 + \epsilon^2 \Delta^{(2)} + \epsilon^4 \Delta^{(4)} + \epsilon^6 \Delta^{(6)},$$

and $\Delta^{(q)}$ are polynomials of degree q in (m, p).

Further examples of integrable HK-discretizations

Overview given in

- M. Petrera, A. Pfadler, Yu. S. On integrability of Hirota-Kimura type discretizations. Regular Chaotic Dyn., 2011, 16, 245–289.
- 1. Reduced Nahm equations.
- 2. Three-wave interaction system.
- 3. Periodic Volterra chain of period N = 3, 4:

$$\dot{x}_k = x_k(x_{k+1} - x_{k-1}), \quad k \in \mathbb{Z}/N\mathbb{Z}$$

4. Dressing chain with N = 3:

$$\dot{x}_k + \dot{x}_{k+1} = x_{k+1}^2 - x_k^2 + \alpha_{k+1} - \alpha_k, \quad k \in \mathbb{Z}/N\mathbb{Z}, \quad N \text{ odd.}$$

- 5. System of two interacting Euler tops.
- 6. Kirchhof and Clebsch cases of rigid body in an ideal fluid.

Clebsch system

Clebsch case of the motion of a rigid body in an ideal fluid:

It is Hamiltonian w.r.t. Lie-Poisson bracket of e(3), has four functionally independent integrals in involution:

$$I_i = p_i^2 + rac{m_j^2}{\omega_k - \omega_i} + rac{m_k^2}{\omega_j - \omega_i}, \quad (i, j, k) = c.p.(1, 2, 3),$$

and $H_4 = m_1 p_1 + m_2 p_2 + m_3 p_3$.

A Hirota-Kimura (or Kahan) style discretization:

$$\begin{split} \widetilde{m}_1 - m_1 &= \epsilon(\omega_3 - \omega_2)(\widetilde{p}_2 p_3 + p_2 \widetilde{p}_3), \\ \widetilde{m}_2 - m_2 &= \epsilon(\omega_1 - \omega_3)(\widetilde{p}_3 p_1 + p_3 \widetilde{p}_1), \\ \widetilde{m}_3 - m_3 &= \epsilon(\omega_2 - \omega_1)(\widetilde{p}_1 p_2 + p_1 \widetilde{p}_2), \\ \widetilde{p}_1 - p_1 &= \epsilon(\widetilde{m}_3 p_2 + m_3 \widetilde{p}_2) - \epsilon(\widetilde{m}_2 p_3 + m_2 \widetilde{p}_3), \\ \widetilde{p}_2 - p_2 &= \epsilon(\widetilde{m}_1 p_3 + m_1 \widetilde{p}_3) - \epsilon(\widetilde{m}_3 p_1 + m_3 \widetilde{p}_1), \\ \widetilde{p}_3 - p_3 &= \epsilon(\widetilde{m}_2 p_1 + m_2 \widetilde{p}_1) - \epsilon(\widetilde{m}_1 p_2 + m_1 \widetilde{p}_2). \end{split}$$

A birational map of \mathbb{R}^6 of degree 6:

$$\begin{pmatrix} \widetilde{m} \\ \widetilde{p} \end{pmatrix} = \Phi(m, p, \epsilon) = M^{-1}(m, p, \epsilon) \begin{pmatrix} m \\ p \end{pmatrix},$$

with $\omega_{ij} = \omega_i - \omega_j$. The usual reversibility:

$$\Phi^{-1}(m,p,\epsilon) = \Phi(m,p,-\epsilon).$$

Based on:

- M. Petrera, A. Pfadler, Yu. S. On integrability of Hirota-Kimura type discretizations. Experimental study of the discrete Clebsch system. Experimental Math., 2009, 18, 223–247.
- M. Petrera, Yu. S. New results on integrability of the Kahan-Hirota-Kimura discretizations. - In: Nonlinear Systems and Their Remarkable Mathematical Structures, CRC Press, 2018, 94–120.

Theorem. *a)* The set of functions

$$\Psi = (p_1^2, p_2^2, p_3^2, m_1^2, m_2^2, m_3^2, m_1p_1, m_2p_2, m_3p_3, 1)$$

is a HK-set for Φ , with dim $K_{\Psi}(m, p) = 4$. Thus, any orbit of Φ lies on an intersection of four quadrics in \mathbb{R}^6 .

b) The following four are HK-sets for Φ with one-dimensional null-spaces:

$$\begin{split} \Psi_0 &= (p_1^2, p_2^2, p_3^2, 1), \\ \Psi_1 &= (p_1^2, p_2^2, p_3^2, m_1^2, m_2^2, m_3^2, m_1 p_1), \\ \Psi_2 &= (p_1^2, p_2^2, p_3^2, m_1^2, m_2^2, m_3^2, m_2 p_2), \\ \Psi_3 &= (p_1^2, p_2^2, p_3^2, m_1^2, m_2^2, m_3^2, m_3 p_3). \end{split}$$

There holds: $K_{\Psi} = K_{\Psi_0} \oplus K_{\Psi_1} \oplus K_{\Psi_2} \oplus K_{\Psi_3}$.

The claims in part b) refer to solutions of the following systems:

$$(c_1p_1^2 + c_2p_2^2 + c_3p_3^2) \circ \Phi^i = 1,$$

(to be solved for 3 consecutive values of *i*, e.g., i = -1, 0, 1), and

$$(\alpha_1 p_1^2 + \alpha_2 p_2^2 + \alpha_3 p_3^2 + \alpha_4 m_1^2 + \alpha_5 m_2^2 + \alpha_6 m_3^2) \circ \Phi^i = m_1 p_1 \circ \Phi^i,$$

etc. (to be solved for 6 consecutive values of *i*, e.g., $i \in [-2, 3]$).

This is a serious challenge for symbolic computations (for Φ^3 we are dealing with polynomials of degree 216 in 6 variables which is prohibitively complex). Various tricks invented to reduce the range of *i*.

Integral for non-integrable Kahan discretizations

 E. Celledoni, R.I. McLachlan, B. Owren, G.R.W. Quispel. Geometric properties of Kahan's method.
 J. Phys. A, 2013, 46, 025201.

Theorem. Let $f(x) = J\nabla H(x)$, with $J \in so(n)$, Hamilton function $H : \mathbb{R}^n \to \mathbb{R}$ of deg = 3. Then $\Phi_f(x, \epsilon)$ admits a rational integral:

$$\widetilde{H}(x,\epsilon) = H(x) + \frac{\epsilon}{3} (\nabla H(x))^{\mathrm{T}} \left(I - \frac{\epsilon}{2} f'(x)\right)^{-1} f(x),$$

and an invariant volume form

$$\frac{dx_1 \wedge \ldots \wedge dx_n}{\det\left(I - \frac{\epsilon}{2}f'(x)\right)}$$

Degree of denominator $\det(I - \frac{\epsilon}{2}f'(x))$ is *n*, degree of numerator of $\widetilde{H}(x,\epsilon)$ is n + 1.

. Part 2. Integrability of planar quadratic birational maps

- Planar algebraic geometry is much simpler.
- Structure of the group of birational maps of ℙⁿ is unknown for n ≥ 3. For n = 2, generated by quadratic maps (M. Noether theorem).
- For n ≥ 3, many new phenomena. For instance, there does not hold necessarily that deg Φ⁻¹ = deg Φ. (Kahan maps have this property and thus are very special!)

Consider a birational map

$$\phi \colon \mathbb{CP}^2 \to \mathbb{CP}^2, \quad [x:y:z] \mapsto [X:Y:Z],$$

X, Y, Z homogeneous polynomials of deg = d without a non-trivial (polynomial) common factor.

Indeterminacy set (finitely many points, are blown up by φ):

$$\mathcal{I}(\phi) = \{ X = Y = Z = 0 \}.$$

• *Critical set* (dim = 1, is blown down by ϕ):

$$\mathcal{C}(\phi) = \{\det \partial(X, Y, Z) / \partial(x, y, z) = 0\}.$$

Degree lowering and singularity confinement

A component $V \subset C(\phi)$ is a *degree lowering curve*, if for some $n \in \mathbb{N}$ we have $\phi^n(V) \in \mathcal{I}(\phi)$. A *singularity confinement pattern* is a sequence

$$\mathcal{C}(\phi) \supset V \rightarrow \phi(V) \rightarrow \cdots \rightarrow \phi^n(V) \rightarrow \phi^{n+1}(V) \subset \mathcal{C}(\phi^{-1}).$$

A presence of such a curve is necessary and sufficient for $\deg(\phi^n) < (\deg \phi)^n$.

Definition. *Dynamical degree* and *algebraic entropy* of ϕ are

 $\lambda_1(\phi) = \lim_{n \to \infty} (\deg(\phi^n))^{1/n} \le d \text{ and } h(\phi) = \log(\lambda_1(\phi)) \le \log(d).$

Inequalities strict iff there exist degree lowering curves.

How drastic can be the degree drop of iterations ϕ^n ?

Definition. A birational map ϕ is *integrable* if $h(\phi) = 0$.

A generic birational map $\phi : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ of deg = 2 can be represented as $\phi = A_1 \circ \sigma \circ A_2$, where $A_1, A_2 \in Aut(\mathbb{P}^2)$, and

$$\sigma: [\mathbf{X}: \mathbf{y}: \mathbf{Z}] \to [\mathbf{y}\mathbf{Z}: \mathbf{x}\mathbf{Z}: \mathbf{x}\mathbf{y}].$$

The dimension of this orbit is 14.

A generic map from this set, not an involution, can be described by a pair of bilinear (Kahan type) relations:

$$\begin{split} \widetilde{x} - x &= a_1 + a_2(x + \widetilde{x}) + a_3(y + \widetilde{y}) + a_4x\widetilde{x} + a_5y\widetilde{y} + a_6x\widetilde{y} + a_7y\widetilde{x}, \\ \widetilde{y} - y &= b_1 + b_2(x + \widetilde{x}) + b_3(y + \widetilde{y}) + b_4x\widetilde{x} + b_5y\widetilde{y} + b_6x\widetilde{y} + b_7y\widetilde{x}. \end{split}$$

- Singularities: $\mathcal{I}(\phi) = \{p_1, p_2, p_3\}, \mathcal{I}(\phi^{-1}) = \{q_1, q_2, q_3\}.$
- ϕ blows down lines $(p_2p_3), (p_1p_3), (p_1p_2)$ to points q_1, q_2, q_3 , resp.

Definition. Map ϕ is *confining*, if all three lines $(p_j p_k)$ are *degree lowering* (i.e., participate in *singularity confinement patterns*):

$$(p_jp_k) \rightarrow q_i \rightarrow \phi(q_i) \rightarrow \cdots \rightarrow \phi^{n_i-1}(q_i) = p_{\sigma_i} \rightarrow (q_{\sigma_j}q_{\sigma_k}).$$

Orbit data of a confining ϕ consist of (n_1, n_2, n_3) , $(\sigma_1, \sigma_2, \sigma_3)$.

A confining map ϕ can be lifted to an automorphism $\hat{\phi}$ of a surface *S* obtained from \mathbb{P}^2 by blowing up all participating points.

Dynamical degree $\lambda_1(\phi)$ can be found as the spectral radius of the action of $\hat{\phi}^*$ on Pic(*S*).

Theorem [Bedford, Kim' 2004]. For a confining map, $\lambda_1(\phi)$ depends only on the orbit data associated to ϕ .

Example of integrable planar birational map: Kahan discretization of Hamiltonian systems

For
$$n = 2$$
, consider $f(x, y) = J \nabla H(x, y)$, with $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

 Φ_f is a birational planar map with an invariant measure and an integral \Rightarrow completely integrable. Integral:

$$\widetilde{H}(x, y, \epsilon) = rac{\mathcal{C}(x, y, \epsilon)}{\mathcal{D}(x, y, \epsilon)},$$

where deg C = 3, deg D = 2. Level sets:

$$\mathcal{E}_{\lambda} = \{(x, y) : C(x, y, \epsilon) - \lambda D(x, y, \epsilon) = 0\},\$$

a pencil of cubic curves, characterized by its nine *base points*. On each invariant curve, Φ_f induces a translation (respective to the addition law on this curve).

Complexification, projectivization

Pencil

$$\bar{\mathcal{E}}_{\lambda} = \left\{ [x: y: z] \in \mathbb{CP}^2 : \bar{C}(x, y, z, \epsilon) - \lambda z \bar{D}(x, y, z, \epsilon) = 0 \right\}.$$

spanned by two curves,

$$ar{\mathcal{E}}_0 = \left\{ [x:y:z] \in \mathbb{CP}^2 : \ ar{C}(x,y,z,\epsilon) = \mathbf{0}
ight\},$$

assumed nonsingular, and

$$ar{\mathcal{E}}_{\infty} = \left\{ [x:y:z] \in \mathbb{CP}^2 \, : \, z ar{D}(x,y,z,\epsilon) = \mathbf{0}
ight\}$$

reducible, consisting of conic $\{\overline{D}(x, y, z, \epsilon) = 0\}$ and the line at infinity $\{z = 0\}$. Three base points at infinity:

$$\{F_1, F_2, F_3\} = \bar{\mathcal{E}}_0 \cap \{z = 0\},\$$

and six further base points $\{B_1, \dots B_6\} = \overline{\mathcal{E}}_0 \cap \{\overline{D} = 0\}.$

 M. Petrera, J. Smirin, Yu. S. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Proc. R. Soc. A 476 (2019) 20180761

Theorem. A pencil of elliptic curves consists of invariant curves for Kahan's discretization of a planar quadratic Hamiltonian vector field iff the hexagon through the six finite base points has three pairs of parallel sides which pass through the three base points at infinity.

Manin involutions for cubic curves

Definition. Consider a nonsingular cubic curve $\overline{\mathcal{E}}$ in \mathbb{CP}^2 .

• For a point $P_0 \in \overline{\mathcal{E}}$, the *Manin involution* $I_{\overline{\mathcal{E}},P_0} : \overline{\mathcal{E}} \to \overline{\mathcal{E}}$ is defined as follows:

- For P ≠ P₀, the point P
 = I_{E,P0}(P) is the unique third intersection point of E
 with the line (P₀P);
- For two distinct points $P_0, P_1 \in \overline{\mathcal{E}}$, the Manin transformation $M_{\overline{\mathcal{E}}, P_0, P_1} : \overline{\mathcal{E}} \to \overline{\mathcal{E}}$ is defined as

$$M_{\bar{\mathcal{E}},P_0,P_1}=I_{\bar{\mathcal{E}},P_1}\circ I_{\bar{\mathcal{E}},P_0}.$$

With a natural addition law on $\bar{\mathcal{E}}$:

$$I_{\bar{\mathcal{E}},P_0}(P) = -(P_0 + P), \quad M_{\bar{\mathcal{E}},P_0,P_1}(P) = P + P_0 - P_1.$$

Definition. Consider a pencil $\mathfrak{E} = \{\overline{\mathcal{E}}_{\lambda}\}$ of cubic curves in \mathbb{CP}^2 with at least one nonsingular member.

• Let *B* be a base point of the pencil. The *Manin involution* $I_{\mathfrak{E},B} : \mathbb{CP}^2 \dashrightarrow \mathbb{CP}^2$ is a birational map defined as follows. For any $P \in \mathbb{CP}^2$, not a base point of \mathfrak{E} , let $\overline{\mathcal{E}}_{\lambda}$ be the unique curve of \mathfrak{E} through *P*. Set

$$I_{\mathfrak{E},B}(P) = I_{\overline{\mathcal{E}}_{\lambda},B}(P).$$

• Let B_1, B_2 be two distinct base points of the pencil. The *Manin transformation* $M_{\mathfrak{E},B_1,B_2} : \mathbb{CP}^2 \dashrightarrow \mathbb{CP}^2$ is a birational map defined as

$$M_{\mathfrak{E},B_1,B_2}=I_{\mathfrak{E},B_2}\circ I_{\mathfrak{E},B_1}.$$

Manin involutions for cubic pencils

Direct statement. Proof.

First one shows tha Kahan map Φ_f is a Manin transformation in six different ways:

$$\Phi_{f} = I_{\mathfrak{E},B_{1}} \circ I_{\mathfrak{E},F_{1}} = I_{\mathfrak{E},F_{1}} \circ I_{\mathfrak{E},B_{4}}$$

$$= I_{\mathfrak{E},B_{5}} \circ I_{\mathfrak{E},F_{2}} = I_{\mathfrak{E},F_{2}} \circ I_{\mathfrak{E},B_{2}}$$

$$= I_{\mathfrak{E},B_{3}} \circ I_{\mathfrak{E},F_{3}} = I_{\mathfrak{E},F_{3}} \circ I_{\mathfrak{E},B_{6}}.$$

Thus (on any invariant curve of \mathfrak{E}):

1

$$F_1 - B_1 = B_2 - F_2 = F_3 - B_3 = B_4 - F_1 = F_2 - B_5 = B_6 - F_3$$
,
and

$$F_1+F_2+F_3=O.$$

Have, e.g.:

$$B_1+B_2=F_1+F_2=-F_3 \quad \Leftrightarrow \quad B_1+B_2+F_3=O.$$

Thus, line (B_1B_2) passes through F_3 .

Inverse statement. Proof.

Prescribe arbitrary nine coefficients of the side lines of the hexagon (three slopes μ_1 , μ_2 , μ_3 and six heights b_1, \ldots, b_6):

This defines nine points B_1, \ldots, B_6 and F_1, F_2, F_3 , therefore a pencil \mathfrak{E} of cubic curves with those nine base points. Set

$$\Phi = I_{\mathfrak{E},B_1} \circ I_{\mathfrak{E},F_1} = I_{\mathfrak{E},F_1} \circ I_{\mathfrak{E},B_4}$$
$$= I_{\mathfrak{E},B_5} \circ I_{\mathfrak{E},F_2} = I_{\mathfrak{E},F_2} \circ I_{\mathfrak{E},B_2}$$
$$= I_{\mathfrak{E},B_3} \circ I_{\mathfrak{E},F_3} = I_{\mathfrak{E},F_3} \circ I_{\mathfrak{E},B_6}.$$

This is a birational map of \mathbb{CP}^2 of degree 2. Check that this is a Kahan discretization of $f = J\nabla H$ with deg H = 3.

Explicit expression:

$$\begin{split} & \mathcal{H}(x,y) = \\ & \frac{2\mu_{12}}{b_{14}\mu_{23}\mu_{13}} \Big(\frac{1}{3}(\mu_3 x - y)^3 + \frac{1}{2}(b_1 + b_4)(\mu_3 x - y)^2 + b_1b_4(\mu_3 x - y) \Big) \\ & - \frac{2\mu_{23}}{b_{25}\mu_{12}\mu_{13}} \Big(\frac{1}{3}(\mu_1 x - y)^3 + \frac{1}{2}(b_2 + b_5)(\mu_1 x - y)^2 + b_2b_5(\mu_1 x - y) \Big) \\ & + \frac{2\mu_{13}}{b_{36}\mu_{12}\mu_{23}} \Big(\frac{1}{3}(\mu_2 x - y)^3 + \frac{1}{2}(b_3 + b_6)(\mu_2 x - y)^2 + b_3b_6(\mu_2 x - y) \Big), \end{split}$$

where $b_{ij} = b_i - b_j$, $\mu_{ij} = \mu_i - \mu_j$.

Geometry implies dynamics!

Projective generalization of Hamiltonian case

Pascal configuration: six points A_1 , A_2 , A_3 , C_1 , C_2 , C_3 on a conic C, and three intersection points on a line ℓ :

 $B_1 = (A_2C_3) \cap (A_3C_2), \quad B_2 = (A_3C_1) \cap (A_1C_3), \quad B_3 = (A_1C_2) \cap (A_2C_1).$

Consider pencil \mathfrak{E} of cubic curves passing through the nine points A_i , C_i , B_i (contains a reducible cubic $\mathcal{C} \cup \ell$).

Construction

Theorem [S.' 2020]. The map

$$\Phi = I_{\mathfrak{E},A_1} \circ I_{\mathfrak{E},B_1} = I_{\mathfrak{E},B_1} \circ I_{\mathfrak{E},C_1}$$
$$= I_{\mathfrak{E},A_2} \circ I_{\mathfrak{E},B_2} = I_{\mathfrak{E},B_2} \circ I_{\mathfrak{E},C_2}$$
$$= I_{\mathfrak{E},A_3} \circ I_{\mathfrak{E},B_3} = I_{\mathfrak{E},B_3} \circ I_{\mathfrak{E},C_3}$$

is a birational map of degree 2 with

- $\mathcal{I}(\Phi) = \{C_1, C_2, C_3\}$, blown up to lines $c_1 = (A_2A_3)$, $c_2 = (A_3A_1)$, $c_3 = (A_1A_2)$,
- $C(\Phi)$ consisting of three lines $a_1 = (C_2C_3)$, $a_2 = (C_3C_1)$, $a_3 = (C_2C_3)$, blown down to points A_1 , A_2 , A_3 .

Singularity confinement patterns of the map Φ :

$$(C_2C_3)
ightarrow A_1
ightarrow B_1
ightarrow C_1
ightarrow (A_2A_3),$$

 $(C_3C_1)
ightarrow A_2
ightarrow B_2
ightarrow C_2
ightarrow (A_3A_1),$
 $(C_1C_2)
ightarrow A_3
ightarrow B_3
ightarrow C_3
ightarrow (A_1A_2).$

To show: why the six Manin transformations correspond to one and the same translation on any curve of the pencil:

$$A_1 - B_1 = B_1 - C_1 = A_2 - B_2 = B_2 - C_2 = A_3 - B_3 = B_3 - C_3.$$

Collinearities of Pascal configuration are translated to:

$$\begin{array}{ll} A_2+C_3+B_1=O, & A_3+C_2+B_1=O, \\ A_3+C_1+B_2=O, & A_1+C_3+B_2=O, \\ A_1+C_2+B_3=O, & A_2+C_1+B_3=O, \end{array}$$

and

$$B_1 + B_2 + B_3 = O.$$

Now:
$$A_1 + C_1 = -(C_2 + B_3) - (A_3 + B_2)$$

= $-(A_3 + C_2) - (B_2 + B_3) = B_1 + B_1,$

which proves that $A_1 - B_1 = B_1 - C_1$. Similarly,

$$A_2 + C_1 = -B_3 = B_1 + B_2,$$

which proves that $B_1 - C_1 = A_2 - B_2$.

All other equations follow in the same way.

R. Penrose, C. Smith. *A quadratic mapping with invariant cubic curve*. Math. Proc. Camb. Phyl. Soc. **89** (1981), 89–105:

$$\Phi: \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} x_0(x_0 + ax_1 + a^{-1}x_2) \\ x_1(x_1 + ax_2 + a^{-1}x_0) \\ x_2(x_2 + ax_0 + a^{-1}x_1) \end{bmatrix}$$

with

$$A_1 = [0:1:-a], \quad C_1 = [0:a:-1], \quad B_1 = [0:1:-1]$$

(and others cyclically). Upon a projective transformation sending B_1 , B_2 , B_3 to infinity, get a Kahan discretization of a Hamiltonian vector field with H(x, y) = xy(1 - x - y) with the time step $\epsilon = (a - 1)/(a + 1)$.

Further examples: $(\gamma_1, \gamma_2, \gamma_3)$ -family of 2d quadratic systems

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \frac{1}{\ell_1^{\gamma_1 - 1} \ell_2^{\gamma_2 - 1} \ell_3^{\gamma_3 - 1}} J \nabla H,$$

where

$$J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad H(x, y) = (\ell_1(x, y))^{\gamma_1} (\ell_2(x, y))^{\gamma_2} (\ell_3(x, y))^{\gamma_3},$$

 $\ell_i(x, y) = a_i x + b_i y$ are linear forms, and $\gamma_1, \gamma_2, \gamma_3 \in \mathbb{R}$.

Origin: reduced Nahm equations for symmetric monopoles [Hitchin, Manton, Murray' 1995]

• Tetrahedral symmetry, $(\gamma_1, \gamma_2, \gamma_3) = (1, 1, 1)$:

$$\begin{cases} \dot{x} = x^2 - y^2, \\ \dot{y} = -2xy, \end{cases} \quad H_1(x, y) = \frac{y}{3}(3x^2 - y^2).$$

• Octahedral symmetry, $(\gamma_1, \gamma_2, \gamma_3) = (1, 1, 2)$:

$$\begin{cases} \dot{x} = x^2 - 6y^2, \\ \dot{y} = -3xy - 2y^2, \end{cases} \qquad H_2(x, y) = \frac{y}{2}(2x + 3y)(x - y)^2.$$

• Octahedral symmetry, $(\gamma_1, \gamma_2, \gamma_3) = (1, 2, 3)$:

$$\begin{cases} \dot{x} = 2x^2 - y^2, \\ \dot{y} = -10xy + y^2, \end{cases} \qquad H_3(x, y) = \frac{y}{6}(3x - y)^2(4x + y)^3.$$

In all three cases all level sets $H_i(x, y) = c$ are elliptic curves.

The $(\gamma_1, \gamma_2, \gamma_3)$ -family: discretization

Hirota-Kimura-Kahan discretizations are integrable [Petrera, Pfadler, S.' 2011]:

$$\begin{cases} \widetilde{\mathbf{x}} - \mathbf{x} = \epsilon(\widetilde{\mathbf{x}}\mathbf{x} - \widetilde{\mathbf{y}}\mathbf{y}), \\ \widetilde{\mathbf{y}} - \mathbf{y} = -\epsilon(\widetilde{\mathbf{x}}\mathbf{y} + \mathbf{x}\widetilde{\mathbf{y}}), \end{cases}$$

$$\begin{cases} \widetilde{x} - x = \epsilon(2\widetilde{x}x - 12\widetilde{y}y), \\ \widetilde{y} - y = -\epsilon(3\widetilde{x}y + 3\widetilde{y} + 4\widetilde{y}y), \end{cases}$$

$$\begin{cases} \widetilde{x} - x = \epsilon(2\widetilde{x}x - \widetilde{y}y), \\ \widetilde{y} - y = \epsilon(-5\widetilde{x}y - 5x\widetilde{y} + \widetilde{y}y). \end{cases}$$

In all three cases, the map admits an invariant pencil of elliptic curves, of degrees 3, 4, and 6, respectively.

The $(\gamma_1, \gamma_2, \gamma_3)$ -family: classification of integrable cases through discretization

Theorem [Zander' 2020]. The only three cases when the Kahan discretization of the $(\gamma_1, \gamma_2, \gamma_3)$ -system is confining, are $(\gamma_1, \gamma_2, \gamma_3) = (1, 1, 1), (1, 1, 2)$, and (1, 2, 3). The orbit data in these three cases are: $(\sigma_1, \sigma_2, \sigma_3) = (1, 2, 3)$ and, respectively,

$$(n_1, n_2, n_3) = (3, 3, 3), (4, 4, 2), and (6, 3, 2).$$

Observe: these (n_1, n_2, n_3) are the only positive integer solutions of

$$\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} = 1.$$

Puzzle: what do lengths of singularity confinement patterns have to do with tilings of the plane by congruent triangles???

Kahan discretization for $(\gamma_1, \gamma_2, \gamma_3) = (1, 1, 2)$

Kahan discretization for $(\gamma_1, \gamma_2, \gamma_3) = (1, 1, 2)$

- Invariant pencil consists of quartic curves with two double points: 𝔅 = 𝒫(4; 𝒫₁,...,𝒫₈, 𝒫₉², 𝒫₁₀²).
- $\mathcal{I}(\phi) = \{p_4, p_8, p_{10}\}, \mathcal{I}(\phi^{-1}) = \{p_1, p_5, p_9\}.$
- Singularity confinement patterns:

$$(p_8p_{10})
ightarrow p_1
ightarrow p_2
ightarrow p_3
ightarrow p_4
ightarrow (p_5p_9)$$

 $(p_4p_{10})
ightarrow p_5
ightarrow p_6
ightarrow p_7
ightarrow p_8
ightarrow (p_1p_9)$
 $(p_4p_8)
ightarrow p_9
ightarrow p_{10}
ightarrow (p_1p_5)$

What is the geometric representation?

Manin involutions for $\mathfrak{E} = \mathcal{P}(4; p_1, \dots, p_8, p_9^2, p_{10}^2)$:

- ► $I_k^{(1)}$, $k \in \{9, 10\}$: $I_k^{(1)}(p)$ is the third intersection point of the quartic through *p* with the line (pp_k) .
- $I_{i,j}^{(2)}$, $i, j \in \{1, ..., 8\}$: $I_{i,j}^{(2)}(p)$ is the sixth intersection point of the quartic through p with the conic through p_9 , p_{10} , p_i , p_j , p.

Are derived from Manin involutions for a cubic pencil upon a quadratic Cremona transformation resolving both double points.

Involutions for quartic pencils with two double points

Quadratic Manin maps for special quartic pencils

Geometry of base points of a *projectively symmetric quartic* pencil with two double points $\mathfrak{E} = \mathcal{P}(4; p_1, \dots, p_8, p_9^2, p_{10}^2)$.

Quadratic Manin maps for special quartic pencils

Theorem [Petrera, S., Wei, Zander' 2021].

1. The projective involution σ can be represented as

$$\sigma = I_{1,8}^{(2)} = I_{2,7}^{(2)} = I_{3,6}^{(2)} = I_{4,5}^{(2)}.$$

2. The map

$$\phi = I_{i,k}^{(2)} \circ I_{j,k}^{(2)} = I_9^{(1)} \circ \sigma = \sigma \circ I_{10}^{(1)},$$

 $(i, j) \in \{(1, 2), (2, 3), (3, 4), (5, 6), (6, 7), (7, 8)\}$ and $k \in \{1, ..., 8\}$ distinct from *i*, *j*, is a birational map of degree 2, with the singularity confinement patterns:

$$(p_8p_{10})
ightarrow p_1
ightarrow p_2
ightarrow p_3
ightarrow p_4
ightarrow (p_5p_9), \ (p_4p_{10})
ightarrow p_5
ightarrow p_6
ightarrow p_7
ightarrow p_8
ightarrow (p_1p_9), \ (p_4p_8)
ightarrow p_9
ightarrow p_{10}
ightarrow (p_1p_5).$$

Kahan discretization for $(\gamma_1, \gamma_2, \gamma_3) = (1, 2, 3)$

Kahan discretization for $(\gamma_1, \gamma_2, \gamma_3) = (1, 2, 3)$

- Invariant pencil of sextic curves with 3 double points and 2 triple points: € = P(6; p₁,..., p₆, p₇², p₈², p₉², p₁₀³, p₁₁³).
- $\mathcal{I}(\phi) = \{ p_6, p_9, p_{11} \}, \mathcal{I}(\phi^{-1}) = \{ p_1, p_7, p_{10} \}.$
- Singularity confinement patterns:

$$(p_9p_{11}) \rightarrow p_1 \rightarrow p_2 \rightarrow p_3 \rightarrow p_4 \rightarrow p_5 \rightarrow p_6 \rightarrow (p_7p_{10}),$$

 $(p_6p_{11}) \rightarrow p_7 \rightarrow p_8 \rightarrow p_9 \rightarrow (p_1p_{10}),$
 $(p_6p_9) \rightarrow p_{10} \rightarrow p_{11} \rightarrow (p_1p_7).$

What is the geometric representation?

Kahan discretization for $(\gamma_1, \gamma_2, \gamma_3) = (1, 2, 3)$

Manin involutions for $\mathfrak{E} = \mathcal{P}(6; p_1, \dots, p_6, p_7^2, p_8^2, p_9^2, p_{10}^3, p_{11}^3)$:

▶ $I_{i,j,k}^{(4)}$, $i, j \in \{1, ..., 6\}$, $k \in \{7, 8, 9\}$: e.g., $I_{i,j,9}^{(4)}$ is defined in terms of intersection of \mathfrak{E} with quartics of the pencil

$$\mathcal{P}(4;\rho_i,\rho_j,\rho_7,\rho_8,\rho_9^2,\rho_{10}^2,\rho_{11}^2).$$

▶ $I_{i,k}^{(3)}$, $i \in \{1, ..., 6\}$, $k \in \{10, 11\}$: e.g., $I_{i,10}^{(3)}$ is defined in terms of intersection of \mathfrak{E} with cubics of the pencil

$$\mathcal{P}(3; p_i, p_7, p_8, p_9, p_{10}^2, p_{11}).$$

Theorem [Petrera, S, Wei, Zander' 2021]. The map ϕ can be represented as compositions of (suitably defined) Manin involutions in the following ways:

$$\begin{split} \phi &= I_{i,k,m}^{(4)} \circ I_{j,k,m}^{(4)} = I_{i,n}^{(3)} \circ I_{j,n}^{(3)} \\ \text{for any } (i,j) \in \{(1,2),(2,3),(3,4),(4,5),(5,6)\}, \\ k \in \{1,\ldots,6\} \setminus \{i,j\}, \text{ and } m \in \{7,8,9\}, n \in \{10,11\} \end{split}$$

Conclusions, work in progress and open problems

- Classification of integrable cases of Kahan discretization for the (γ₁, γ₂, γ₃)-family.
- Geometric construction of Manin involutions for pencils of elliptic curves of degree 4 and 6.
- Integrable Kahan discretizations for (*γ*₁, *γ*₂, *γ*₃) = (1, 1, 1), (1, 1, 2), (1, 2, 3) are Manin maps for pencils of elliptic curves of degree 3, 4, 6, resp.
- Special geometry of base points ensures deg = 2 for certain Manin maps.
- ► Work in progress: singularity structure and geometric description for higher-dimensional examples, e.g., Kahan discretization of the Euler top (3D, g = 1) or the Clebsch system (6D, g = 2).