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Part 1. Generalities
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The problem of integrable discretization. Hamiltonian
approach (Birkhäuser, 2003)

Consider a completely integrable flow

ẋ = f (x) = {H, x} (1)

with a Hamilton function H on a Poisson manifold P with a
Poisson bracket {·, ·}. Thus, flow (1) possesses sufficiently
many functionally independent integrals Ik (x) in involution.

The problem of integrable discretization: find a family of
diffeomorphisms P → P,

x̃ = Φ(x ; ε), (2)

depending smoothly on a small parameter ε > 0, with the
following properties:

Yuri B. Suris Bilinear Discretizations



1. The maps (2) approximate the flow (1):

Φ(x ; ε) = x + εf (x) + O(ε2).

2. The maps (2) are Poisson w. r. t. the bracket {·, ·} or some
its deformation {·, ·}ε = {·, ·}+ O(ε).

3. The maps (2) are integrable, i.e. possess the necessary
number of independent integrals in involution,
Ik (x ; ε) = Ik (x) + O(ε).

While integrable lattice systems (like Toda or Volterra lattices)
can be discretized in a systematic way (based, e.g., on the
r -matrix structure), there is no systematic way to obtain decent
integrable discretizations for integrable systems of classical
mechanics.
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Missing in the book: Hirota-Kimura discretizations

I R.Hirota, K.Kimura. Discretization of the Euler top.
J. Phys. Soc. Japan 69 (2000) 627–630,

I K.Kimura, R.Hirota. Discretization of the Lagrange top.
J. Phys. Soc. Japan 69 (2000) 3193–3199.

Reasons for this omission: discretization of the Euler top
seemed to be an isolated curiosity; discretization of the
Lagrange top seemed to be completely incomprehensible, if not
even wrong.

Renewed interest stimulated by a talk by T. Ratiu at the
Oberwolfach Workshop “Geometric Integration”, March 2006,
who claimed that HK-type discretizations for the Clebsch
system and for the Kovalevsky top are also integrable.
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Hirota-Kimura or Kahan?

I W. Kahan. Unconventional numerical methods for
trajectory calculations (Unpublished lecture notes, 1993).

ẋ = Q(x) + Bx + c  (x̃ − x)/ε = Q(x , x̃) + B(x + x̃)/2 + c,

where B ∈ Rn×n, c ∈ Rn, each component of Q : Rn → Rn is a
quadratic form, and Q(x , x̃) = (Q(x + x̃)−Q(x)−Q(x̃))/2 is
the corresponding symmetric bilinear function. Thus,

ẋk  (x̃k − xk )/ε, x2
k  xk x̃k , xjxk  (xj x̃k + x̃jxk )/2.

Linear w.r.t. x̃ , therefore defines a rational map x̃ = Φf (x , ε).
Obvious symmetry: x ↔ x̃ , ε 7→ −ε, therefore Φf reversible:

Φ−1
f (x , ε) = Φf (x ,−ε).

In particular, Φf is birational, and deg Φf = deg Φ−1
f = n.
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Illustration: Lotka-Volterra system

Kahan’s discretization for the Lotka-Volterra system:{
ẋ = x(1− y),

ẏ = y(x − 1),
 

{
x̃ − x = ε(x̃ + x)− ε(x̃y + xỹ),

ỹ − y = ε(x̃y + xỹ)− ε(ỹ + y).

Explicitly: 
x̃ = x

(1 + ε)2 − ε(1 + ε)x − ε(1− ε)y
1− ε2 − ε(1− ε)x + ε(1 + ε)y

,

ỹ = y
(1− ε)2 + ε(1 + ε)x + ε(1− ε)y
1− ε2 − ε(1− ε)x + ε(1 + ε)y

.
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Left: three orbits of Kahan’s discretization with ε = 0.1,
right: one orbit of the explicit Euler with ε = 0.01.
I J.M. Sanz-Serna. An unconventional symplectic integrator

of W.Kahan. Applied Numer. Math. 1994, 16, 245–250.
A sort of an explanation of a non-spiralling behavior: Kahan’s
discretization is symplectic w.r.t. dx ∧ dy/(xy).

Yuri B. Suris Bilinear Discretizations



Hirota-Kimura’s discrete time Euler top


ẋ1 = α1x2x3,

ẋ2 = α2x3x1,

ẋ3 = α3x1x2,

 


x̃1 − x1 = εα1(x̃2x3 + x2x̃3),

x̃2 − x2 = εα2(x̃3x1 + x3x̃1),

x̃3 − x3 = εα3(x̃1x2 + x1x̃2).

Features:
I Equations are linear w.r.t. x̃ = (x̃1, x̃2, x̃3)T:

A(x , ε)x̃ = x , A(x , ε) =

 1 −εα1x3 −εα1x2
−εα2x3 1 −εα2x1
−εα3x2 −εα3x1 1

 ,

result in a rational map, which is reversible (therefore
birational):

x̃ = Φ(x , ε) = A−1(x , ε)x , Φ−1(x , ε) = Φ(x ,−ε).
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I Explicit formulas:

x̃1 =
x1 + 2εα1x2x3 + ε2x1(−α2α3x2

1 + α3α1x2
2 + α1α2x2

3 )

∆(x , ε)
,

x̃2 =
x2 + 2εα2x3x1 + ε2x2(α2α3x2

1 − α3α1x2
2 + α1α2x2

3 )

∆(x , ε)
,

x̃3 =
x3 + 2εα3x1x2 + ε2x3(α2α3x2

1 + α3α1x2
2 − α1α2x2

3 )

∆(x , ε)
,

where ∆(x , ε) = det A(x , ε)

= 1− ε2(α2α3x2
1 + α3α1x2

2 + α1α2x2
3 )− 2ε3α1α2α3x1x2x3.
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I Two independent integrals:

I1(x , ε) =
1− ε2α2α3x2

1

1− ε2α3α1x2
2
, I2(x , ε) =

1− ε2α3α1x2
2

1− ε2α1α2x2
3
.

I Invariant volume form:

ω =
dx1 ∧ dx2 ∧ dx3

φ(x)
, φ(x) = 1− ε2αiαjx2

k

and bi-Hamiltonian structure found in:
I M. Petrera, Yu. S. On the Hamiltonian structure of the

Hirota-Kimura discretization of the Euler top.
Math. Nachr., 2010, 283, 1654–1663.
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Hirota-Kimura’s discrete time Lagrange top

Equations of motion of the Lagrange top:

ṁ1 = (α− 1)m2m3 + γp2,

ṁ2 = (1− α)m1m3 − γp1,

ṁ3 = 0,
ṗ1 = αp2m3 − p3m2,

ṗ2 = p3m1 − αp1m3,

ṗ3 = p1m2 − p2m1.

It is Hamiltonian w.r.t. Lie-Poisson bracket of e(3), has four
functionally independent integrals in involution: two Casimir
functions,

C1 = p2
1 + p2

2 + p2
3, C2 = m1p1 + m2p2 + m3p3,

the Hamilton function, and the (trivial) “fourth integral”,

H1 =
1
2

(m2
1 + m2

2 + αm2
3) + γp3, H2 = m3.
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Discretization:

m̃1 −m1 = ε(α− 1)(m̃2m3 + m2m̃3) + εγ(p2 + p̃2),

m̃2 −m2 = ε(1− α)(m̃1m3 + m1m̃3)− εγ(p1 + p̃1),

m̃3 −m3 = 0,
p̃1 − p1 = εα(p2m̃3 + p̃2m3)− ε(p3m̃2 + p̃3m2),

p̃2 − p2 = ε(p3m̃1 + p̃3m1)− εα(p1m̃3 + p̃1m3),

p̃3 − p3 = ε(p1m̃2 + p̃1m2 − p2m̃1 − p̃2m1).

As usual, get an explicit birational map (m̃, p̃) = Φ(m,p, ε).

Trivial conserved quantity m3 = const. Very difficult to find any
further conserved quantity!
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Hirota-Kimura’s method for finding integrals

Incredible claim by HK: for any initial point, there exist
A,B,C ∈ R such that

A(m2
1 + m2

2) + Bp2
3 + Cp3 = 1

along the orbit Φi(p,m, ε), i ∈ Z.

How one could check this? Solve the system for the unknowns
A,B,C for i = −1,0,1:

A(m̃2
1 + m̃2

2) + Bp̃2
3 + Cp̃3 = 1,

A(m2
1 + m2

2) + Bp2
3 + Cp3 = 1,

A( m˜ 2
1 + m˜ 2

2) + B p˜2
3 + C p˜3 = 1

with (m̃, p̃) = Φ(m,p, ε) and ( m˜ , p˜) = Φ−1(m,p, ε). Then check
that A,B,C = A,B,C(m,p, ε) are conserved quantities.

Why should this work???
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Hirota-Kimura sets

Definition. For a given bijective map Φ : Rn → Rn, a set of
functions Ψ = (ψ1, . . . , ψ`), linearly independent over R, is
called a HK-set, if for every x0 ∈ Rn there exists a vector
c = (c1, . . . , c`) 6= 0, c = c(x0), such that

c1ψ1(Φi(x0)) + . . .+ c`ψ`(Φi(x0)) = 0 ∀i ∈ Z.

For a given x0 ∈ Rn, the set KΨ(x0) of all vectors c(x0) ∈ R`
with this property is called the null-space of the HK-set Ψ (at
the point x0). This is clearly a vector space.

Dynamical consequence. Existence of a HK-set Ψ with
dim KΨ(x0) = d confines orbits of Φ to (n − d)-dimensional
invariant sets (similarly to the presence of d integrals).
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From HK-sets to integrals

Proposition. If Ψ is a HK-set for a map Φ with a d-dimensional
null space then KΨ(Φ(x0)) = KΨ(x0), a Gr(d , `)-valued integral.

Its Plücker coordinates are scalar integrals.

The most useful particular case:

Corollary. Let Ψ be a HK-set for Φ with dim KΨ(x0) = 1 for all
x0 ∈ Rn. Let KΨ(x0) = [c1(x0) : . . . : c`(x0)] ∈ RP`−1. Then the
functions cj/ck are integrals of motion for Φ.

The number of functionally independent integrals among them
varies in examples (sometimes just = 1 and sometimes > 1).
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Hirota-Kimura sets for the discrete Lagrange top

Results by Hirota and Kimura in the Lagrange top case:

Theorem. The three sets of functions,

Ψ1 = (m2
1 + m2

2, p2
3, p3, 1),

Ψ2 = (m1p1 + m2p2, p2
3, p3, 1),

Ψ3 = (p2
1 + p2

2, p2
3, p3, 1),

are HK-sets for the discrete time Lagrange top with
one-dimensional null-spaces, each producing one independent
integral.

It follows that any orbit lies on a two-dimensional surface in R6

which is intersection of three quadrics and a hyperplane
m3 = const .
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A simple integral (unnoticed by Hirota and Kimura)

Theorem. The functions

Γ = (m̃1p1 −m1p̃1, m̃2p2 −m2p̃2, m̃3p3 −m3p̃3)

build a HK-set for the discrete time Lagrange top with
one-dimensional null-space KΓ(x) = [1 : 1 : J ],

J =
(2α− 1) + ε2(α− 1)(m2

1 + m2
2) + ε2γ(m1p1 + m2p2)/m3

1 + ε2α(1− α)m2
3 − ε2γp3

.

Yuri B. Suris Bilinear Discretizations



Invariant volume form (unknown to Hirota and Kimura)

Theorem. The discrete time Lagrange top possesses an
invariant volume form:

Φ∗ω = ω, ω =
dm1 ∧ dm2 ∧ dm3 ∧ dp1 ∧ dp2 ∧ dp3

∆(m,p)
,

where
∆ = 1 + ε2∆(2) + ε4∆(4) + ε6∆(6),

and ∆(q) are polynomials of degree q in (m,p).
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Further examples of integrable HK-discretizations

Overview given in
I M. Petrera, A. Pfadler, Yu. S. On integrability of

Hirota-Kimura type discretizations. Regular Chaotic Dyn.,
2011, 16, 245–289.

1. Reduced Nahm equations.
2. Three-wave interaction system.
3. Periodic Volterra chain of period N = 3,4:

ẋk = xk (xk+1 − xk−1), k ∈ Z/NZ

4. Dressing chain with N = 3:

ẋk + ẋk+1 = x2
k+1 − x2

k + αk+1 − αk , k ∈ Z/NZ, N odd.

5. System of two interacting Euler tops.
6. Kirchhof and Clebsch cases of rigid body in an ideal fluid.
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Clebsch system

Clebsch case of the motion of a rigid body in an ideal fluid:

ṁ1 = (ω3 − ω2)p2p3,

ṁ2 = (ω1 − ω3)p3p1,

ṁ3 = (ω2 − ω1)p1p2,

ṗ1 = m3p2 −m2p3,

ṗ2 = m1p3 −m3p1,

ṗ3 = m2p1 −m1p2.

It is Hamiltonian w.r.t. Lie-Poisson bracket of e(3), has four
functionally independent integrals in involution:

Ii = p2
i +

m2
j

ωk − ωi
+

m2
k

ωj − ωi
, (i , j , k) = c.p.(1,2,3),

and H4 = m1p1 + m2p2 + m3p3.
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Hirota-Kimura discretization of the Clebsch system

A Hirota-Kimura (or Kahan) style discretization:

m̃1 −m1 = ε(ω3 − ω2)(p̃2p3 + p2p̃3),

m̃2 −m2 = ε(ω1 − ω3)(p̃3p1 + p3p̃1),

m̃3 −m3 = ε(ω2 − ω1)(p̃1p2 + p1p̃2),

p̃1 − p1 = ε(m̃3p2 + m3p̃2)− ε(m̃2p3 + m2p̃3),

p̃2 − p2 = ε(m̃1p3 + m1p̃3)− ε(m̃3p1 + m3p̃1),

p̃3 − p3 = ε(m̃2p1 + m2p̃1)− ε(m̃1p2 + m1p̃2).

Yuri B. Suris Bilinear Discretizations



A birational map of R6 of degree 6:(
m̃
p̃

)
= Φ(m,p, ε) = M−1(m,p, ε)

(
m
p

)
,

M(m,p, ε) =



1 0 0 0 εω23p3 εω23p2
0 1 0 εω31p3 0 εω31p1
0 0 1 εω12p2 εω12p1 0
0 εp3 −εp2 1 −εm3 εm2
−εp3 0 εp1 εm3 1 −εm1
εp2 −εp1 0 −εm2 εm1 1

 ,

with ωij = ωi − ωj . The usual reversibility:

Φ−1(m,p, ε) = Φ(m,p,−ε).
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Results for the discrete Clebsch system

Based on:
I M. Petrera, A. Pfadler, Yu. S. On integrability of

Hirota-Kimura type discretizations. Experimental study of
the discrete Clebsch system. Experimental Math., 2009,
18, 223–247.

I M. Petrera, Yu. S. New results on integrability of the
Kahan-Hirota-Kimura discretizations. - In: Nonlinear
Systems and Their Remarkable Mathematical Structures,
CRC Press, 2018, 94–120.
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Theorem. a) The set of functions

Ψ = (p2
1,p

2
2,p

2
3,m

2
1,m

2
2,m

2
3,m1p1,m2p2,m3p3,1)

is a HK-set for Φ, with dim KΨ(m,p) = 4. Thus, any orbit of Φ
lies on an intersection of four quadrics in R6.

b) The following four are HK-sets for Φ with one-dimensional
null-spaces:

Ψ0 = (p2
1,p

2
2,p

2
3,1),

Ψ1 = (p2
1,p

2
2,p

2
3,m

2
1,m

2
2,m

2
3,m1p1),

Ψ2 = (p2
1,p

2
2,p

2
3,m

2
1,m

2
2,m

2
3,m2p2),

Ψ3 = (p2
1,p

2
2,p

2
3,m

2
1,m

2
2,m

2
3,m3p3).

There holds: KΨ = KΨ0 ⊕ KΨ1 ⊕ KΨ2 ⊕ KΨ3 .
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Complexity issues

The claims in part b) refer to solutions of the following systems:

(c1p2
1 + c2p2

2 + c3p2
3) ◦ Φi = 1,

(to be solved for 3 consecutive values of i , e.g., i = −1,0,1),
and

(α1p2
1 + α2p2

2 + α3p2
3 + α4m2

1 + α5m2
2 + α6m2

3) ◦Φi = m1p1 ◦Φi ,

etc. (to be solved for 6 consecutive values of i , e.g., i ∈ [−2,3]).

This is a serious challenge for symbolic computations (for Φ3

we are dealing with polynomials of degree 216 in 6 variables
which is prohibitively complex). Various tricks invented to
reduce the range of i .
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Integral for non-integrable Kahan discretizations

I E. Celledoni, R.I. McLachlan, B. Owren, G.R.W. Quispel.
Geometric properties of Kahan’s method.
J. Phys. A, 2013, 46, 025201.

Theorem. Let f (x) = J∇H(x), with J ∈ so(n), Hamilton
function H : Rn → R of deg = 3. Then Φf (x , ε) admits a rational
integral:

H̃(x , ε) = H(x) +
ε

3
(∇H(x))T

(
I − ε

2
f ′(x)

)−1
f (x),

and an invariant volume form

dx1 ∧ . . . ∧ dxn

det
(

I − ε

2
f ′(x)

) .
Degree of denominator det(I − ε

2 f ′(x)) is n, degree of
numerator of H̃(x , ε) is n + 1.
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. Part 2. Integrability of planar
quadratic birational maps
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Why planar?

I Planar algebraic geometry is much simpler.
I Structure of the group of birational maps of Pn is unknown

for n ≥ 3. For n = 2, generated by quadratic maps (M.
Noether theorem).

I For n ≥ 3, many new phenomena. For instance, there does
not hold necessarily that deg Φ−1 = deg Φ. (Kahan maps
have this property and thus are very special!)
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Planar birational maps

I Consider a birational map

φ : CP2 → CP2, [x : y : z] 7→ [X : Y : Z ],

X ,Y ,Z homogeneous polynomials of deg = d without a
non-trivial (polynomial) common factor.

I Indeterminacy set (finitely many points, are blown up by φ):

I(φ) = {X = Y = Z = 0}.
I Critical set (dim = 1, is blown down by φ):

C(φ) = {det ∂(X ,Y ,Z )/∂(x , y , z) = 0}.
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Degree lowering and singularity confinement

A component V ⊂ C(φ) is a degree lowering curve, if for some
n ∈ N we have φn(V ) ∈ I(φ). A singularity confinement pattern
is a sequence

C(φ) ⊃ V → φ(V )→ · · · → φn(V )→ φn+1(V ) ⊂ C(φ−1).

A presence of such a curve is necessary and sufficient for
deg(φn) < (degφ)n.
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Algebraic entropy

Definition. Dynamical degree and algebraic entropy of φ are

λ1(φ) = lim
n→∞

(deg(φn))1/n ≤ d and h(φ) = log(λ1(φ)) ≤ log(d).

Inequalities strict iff there exist degree lowering curves.

How drastic can be the degree drop of iterations φn?

Definition. A birational map φ is integrable if h(φ) = 0.
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Birational quadratic maps of P2

A generic birational map φ : P2 99K P2 of deg = 2 can be
represented as φ = A1 ◦ σ ◦ A2, where A1,A2 ∈ Aut(P2), and

σ : [x : y : z]→ [yz : xz : xy ].

The dimension of this orbit is 14.

A generic map from this set, not an involution, can be described
by a pair of bilinear (Kahan type) relations:

x̃ − x = a1 + a2(x + x̃) + a3(y + ỹ) + a4xx̃ + a5yỹ + a6xỹ + a7yx̃ ,
ỹ − y = b1 + b2(x + x̃) + b3(y + ỹ) + b4xx̃ + b5yỹ + b6xỹ + b7yx̃ .
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Singularities of birational quadratic maps of P2

I Singularities: I(φ) = {p1,p2,p3}, I(φ−1) = {q1,q2,q3}.
I φ blows up points p1,p2,p3 to lines (q2q3), (q1q3), (q1q2),

resp.
I φ blows down lines (p2p3), (p1p3), (p1p2) to points

q1,q2,q3, resp.
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Lifting to automorphism

Definition. Map φ is confining, if all three lines (pjpk ) are
degree lowering (i.e., participate in singularity confinement
patterns):

(pjpk )→ qi → φ(qi)→ · · · → φni−1(qi) = pσi → (qσj qσk ).

Orbit data of a confining φ consist of (n1,n2,n3), (σ1, σ2, σ3).

A confining map φ can be lifted to an automorphism φ̂ of a
surface S obtained from P2 by blowing up all participating
points.

Dynamical degree λ1(φ) can be found as the spectral radius of
the action of φ̂∗ on Pic(S).

Theorem [Bedford, Kim’ 2004]. For a confining map, λ1(φ)
depends only on the orbit data associated to φ.
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Example of integrable planar birational map: Kahan
discretization of Hamiltonian systems

For n = 2, consider f (x , y) = J∇H(x , y), with J =

(
0 1
−1 0

)
.

Φf is a birational planar map with an invariant measure and an
integral⇒ completely integrable. Integral:

H̃(x , y , ε) =
C(x , y , ε)
D(x , y , ε)

,

where deg C = 3, deg D = 2. Level sets:

Eλ =
{

(x , y) : C(x , y , ε)− λD(x , y , ε) = 0
}
,

a pencil of cubic curves, characterized by its nine base points.
On each invariant curve, Φf induces a translation (respective to
the addition law on this curve).
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Complexification, projectivization

Pencil

Ēλ =
{

[x : y : z] ∈ CP2 : C̄(x , y , z, ε)− λzD̄(x , y , z, ε) = 0
}
.

spanned by two curves,

Ē0 =
{

[x : y : z] ∈ CP2 : C̄(x , y , z, ε) = 0
}
,

assumed nonsingular, and

Ē∞ =
{

[x : y : z] ∈ CP2 : zD̄(x , y , z, ε) = 0
}

reducible, consisting of conic {D̄(x , y , z, ε) = 0} and the line at
infinity {z = 0}. Three base points at infinity:

{F1,F2,F3} = Ē0 ∩ {z = 0},

and six further base points {B1, . . .B6} = Ē0 ∩ {D̄ = 0}.
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INTEGRABLE MAPS FROM SPHERICAL GEOMETRY

1. SPHERICAL TRIANGLES

F1 F2

F3

B6
B5

B4

B3

B1

B2

B5

B2

�2F2

1
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Main result

I M. Petrera, J. Smirin, Yu. S. Geometry of the Kahan
discretizations of planar quadratic Hamiltonian systems.
Proc. R. Soc. A 476 (2019) 20180761

Theorem. A pencil of elliptic curves consists of invariant curves
for Kahan’s discretization of a planar quadratic Hamiltonian
vector field iff the hexagon through the six finite base points has
three pairs of parallel sides which pass through the three base
points at infinity.
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2 INTEGRABLE MAPS FROM SPHERICAL GEOMETRY

B6

B5

B4

B3

B1

B2

F3

F2

F1

F1 F2

F3

B6

B5

B4

B3

B1

B2
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Manin involutions for cubic curves

Definition. Consider a nonsingular cubic curve Ē in CP2.
• For a point P0 ∈ Ē , the Manin involution IĒ,P0

: Ē → Ē is
defined as follows:
I For P 6= P0, the point P̄ = IĒ,P0

(P) is the unique third
intersection point of Ē with the line (P0P);

I For P = P0, the point P̄ = IĒ,P0
(P) is the unique second

intersection point of Ē with the tangent line to Ē at P = P0.

• For two distinct points P0,P1 ∈ Ē , the Manin transformation
MĒ,P0,P1

: Ē → Ē is defined as

MĒ,P0,P1
= IĒ,P1

◦ IĒ,P0
.

With a natural addition law on Ē :

IĒ,P0
(P) = −(P0 + P), MĒ,P0,P1

(P) = P + P0 − P1.
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Manin involutions for cubic pencils

Definition. Consider a pencil E = {Ēλ} of cubic curves in CP2

with at least one nonsingular member.
• Let B be a base point of the pencil. The Manin involution
IE,B : CP2 99K CP2 is a birational map defined as follows. For
any P ∈ CP2, not a base point of E, let Ēλ be the unique curve
of E through P. Set

IE,B(P) = IĒλ,B(P).

• Let B1,B2 be two distinct base points of the pencil. The
Manin transformation ME,B1,B2 : CP2 99K CP2 is a birational map
defined as

ME,B1,B2 = IE,B2 ◦ IE,B1 .
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Manin involutions for cubic pencils

p1

p2

p3

p4

p5

p6

p7

p8

p9

p
Ip1(p)
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Direct statement. Proof.

First one shows tha Kahan map Φf is a Manin transformation in
six different ways:

Φf = IE,B1 ◦ IE,F1 = IE,F1 ◦ IE,B4

= IE,B5 ◦ IE,F2 = IE,F2 ◦ IE,B2

= IE,B3 ◦ IE,F3 = IE,F3 ◦ IE,B6 .

Thus (on any invariant curve of E):

F1 − B1 = B2 − F2 = F3 − B3 = B4 − F1 = F2 − B5 = B6 − F3,

and
F1 + F2 + F3 = O.

Have, e.g.:

B1 + B2 = F1 + F2 = −F3 ⇔ B1 + B2 + F3 = O.

Thus, line (B1B2) passes through F3.
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Inverse statement. Proof.

Prescribe arbitrary nine coefficients of the side lines of the
hexagon (three slopes µ1, µ2, µ3 and six heights b1, . . . ,b6):

(B1B2) : y = µ3x + b1, (B4B5) : y = µ3x + b4,

(B2B3) : y = µ1x + b2, (B5B6) : y = µ1x + b5,

(B3B4) : y = µ2x + b3, (B6B1) : y = µ2x + b6.

This defines nine points B1, . . . ,B6 and F1,F2,F3, therefore a
pencil E of cubic curves with those nine base points. Set

Φ = IE,B1 ◦ IE,F1 = IE,F1 ◦ IE,B4

= IE,B5 ◦ IE,F2 = IE,F2 ◦ IE,B2

= IE,B3 ◦ IE,F3 = IE,F3 ◦ IE,B6 .

This is a birational map of CP2 of degree 2. Check that this is a
Kahan discretization of f = J∇H with deg H = 3.
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Inverse statement. Proof.

Explicit expression:

H(x , y) =

2µ12

b14µ23µ13

(
1
3 (µ3x − y)3 + 1

2 (b1 + b4)(µ3x − y)2 + b1b4(µ3x − y)
)

− 2µ23

b25µ12µ13

(
1
3 (µ1x − y)3 + 1

2 (b2 + b5)(µ1x − y)2 + b2b5(µ1x − y)
)

+
2µ13

b36µ12µ23

(
1
3 (µ2x − y)3 + 1

2 (b3 + b6)(µ2x − y)2 + b3b6(µ2x − y)
)
,

where bij = bi − bj , µij = µi − µj .

Geometry implies dynamics!
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Projective generalization of Hamiltonian case

Pascal configuration: six points A1, A2, A3, C1, C2, C3 on a
conic C, and three intersection points on a line `:

B1 = (A2C3)∩(A3C2), B2 = (A3C1)∩(A1C3), B3 = (A1C2)∩(A2C1).

A1
A2 A3

C1
C2

C3

B1
B2

B3

Consider pencil E of cubic curves passing through the nine
points Ai , Ci , Bi (contains a reducible cubic C ∪ `).
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Construction

Theorem [S.’ 2020]. The map

Φ = IE,A1 ◦ IE,B1 = IE,B1 ◦ IE,C1

= IE,A2 ◦ IE,B2 = IE,B2 ◦ IE,C2

= IE,A3 ◦ IE,B3 = IE,B3 ◦ IE,C3

is a birational map of degree 2 with
I I(Φ) = {C1,C2,C3}, blown up to lines c1 = (A2A3),

c2 = (A3A1), c3 = (A1A2),
I C(Φ) consisting of three lines a1 = (C2C3), a2 = (C3C1),

a3 = (C2C3), blown down to points A1, A2, A3.
Singularity confinement patterns of the map Φ:

(C2C3)→ A1 → B1 → C1 → (A2A3),

(C3C1)→ A2 → B2 → C2 → (A3A1),

(C1C2)→ A3 → B3 → C3 → (A1A2).
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Proof

To show: why the six Manin transformations correspond to one
and the same translation on any curve of the pencil:

A1 − B1 = B1 − C1 = A2 − B2 = B2 − C2 = A3 − B3 = B3 − C3.

Collinearities of Pascal configuration are translated to:

A2 + C3 + B1 = O, A3 + C2 + B1 = O,
A3 + C1 + B2 = O, A1 + C3 + B2 = O,
A1 + C2 + B3 = O, A2 + C1 + B3 = O,

and
B1 + B2 + B3 = O.

Yuri B. Suris Bilinear Discretizations



Now: A1 + C1 = −(C2 + B3)− (A3 + B2)

= −(A3 + C2)− (B2 + B3) = B1 + B1,

which proves that A1 − B1 = B1 − C1. Similarly,

A2 + C1 = −B3 = B1 + B2,

which proves that B1 − C1 = A2 − B2.
All other equations follow in the same way.
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An early example

R. Penrose, C. Smith. A quadratic mapping with invariant cubic
curve. Math. Proc. Camb. Phyl. Soc. 89 (1981), 89–105:

Φ :

 x0
x1
x2

 7→
 x0(x0 + ax1 + a−1x2)

x1(x1 + ax2 + a−1x0)
x2(x2 + ax0 + a−1x1)


with

A1 = [0 : 1 : −a], C1 = [0 : a : −1], B1 = [0 : 1 : −1]

(and others cyclically). Upon a projective transformation
sending B1, B2, B3 to infinity, get a Kahan discretization of a
Hamiltonian vector field with H(x , y) = xy(1− x − y) with the
time step ε = (a− 1)/(a + 1).
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Further examples: (γ1, γ2, γ3)-family of 2d quadratic
systems

(
ẋ
ẏ

)
=

1

`γ1−1
1 `γ2−1

2 `γ3−1
3

J∇H,

where

J =

(
0 1
−1 0

)
, H(x , y) = (`1(x , y))γ1(`2(x , y))γ2(`3(x , y))γ3 ,

`i(x , y) = aix + biy are linear forms, and γ1, γ2, γ3 ∈ R.

Yuri B. Suris Bilinear Discretizations



Origin: reduced Nahm equations for symmetric
monopoles [Hitchin, Manton, Murray’ 1995]

• Tetrahedral symmetry, (γ1, γ2, γ3) = (1,1,1):{
ẋ = x2 − y2,
ẏ = −2xy ,

H1(x , y) =
y
3

(3x2 − y2).

• Octahedral symmetry, (γ1, γ2, γ3) = (1,1,2):{
ẋ = x2 − 6y2,

ẏ = −3xy − 2y2,
H2(x , y) =

y
2

(2x + 3y)(x − y)2.

• Octahedral symmetry, (γ1, γ2, γ3) = (1,2,3):{
ẋ = 2x2 − y2,

ẏ = −10xy + y2,
H3(x , y) =

y
6

(3x − y)2(4x + y)3.

In all three cases all level sets Hi(x , y) = c are elliptic curves.
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The (γ1, γ2, γ3)-family: discretization

Hirota-Kimura-Kahan discretizations are integrable [Petrera,
Pfadler, S.’ 2011]:{

x̃ − x = ε(x̃x − ỹy),
ỹ − y = −ε(x̃y + xỹ),

{
x̃ − x = ε(2x̃x − 12ỹy),
ỹ − y = −ε(3x̃y + 3xỹ + 4ỹy),

{
x̃ − x = ε(2x̃x − ỹy),
ỹ − y = ε(−5x̃y − 5xỹ + ỹy).

In all three cases, the map admits an invariant pencil of elliptic
curves, of degrees 3, 4, and 6, respectively.
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The (γ1, γ2, γ3)-family: classification of integrable
cases through discretization

Theorem [Zander’ 2020]. The only three cases when the
Kahan discretization of the (γ1, γ2, γ3)-system is confining, are
(γ1, γ2, γ3) = (1,1,1), (1,1,2), and (1,2,3). The orbit data in
these three cases are: (σ1, σ2, σ3) = (1,2,3) and, respectively,

(n1,n2,n3) = (3,3,3), (4,4,2), and (6,3,2).

Observe: these (n1,n2,n3) are the only positive integer
solutions of

1
n1

+
1
n2

+
1
n3

= 1.

Puzzle: what do lengths of singularity confinement patterns
have to do with tilings of the plane by congruent triangles???
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Kahan discretization for (γ1, γ2, γ3) = (1,1,2)

p1 p2p3 p4

p5

p6

p7

p8
p9

p10
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Kahan discretization for (γ1, γ2, γ3) = (1,1,2)

I Invariant pencil consists of quartic curves with two double
points: E = P(4; p1, . . . ,p8,p2

9,p
2
10).

I I(φ) = {p4,p8,p10}, I(φ−1) = {p1,p5,p9}.
I Singularity confinement patterns:

(p8p10)→ p1 → p2 → p3 → p4 → (p5p9)

(p4p10)→ p5 → p6 → p7 → p8 → (p1p9)

(p4p8)→ p9 → p10 → (p1p5)

I What is the geometric representation?
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Involutions for quartic pencils with two double points

Manin involutions for E = P(4; p1, . . . ,p8,p2
9,p

2
10):

I I(1)
k , k ∈ {9,10}: I(1)

k (p) is the third intersection point of
the quartic through p with the line (ppk ).

I I(2)
i,j , i , j ∈ {1, . . . ,8}: I(2)

i,j (p) is the sixth intersection point
of the quartic through p with the conic through p9, p10, pi ,
pj , p.

Are derived from Manin involutions for a cubic pencil upon a
quadratic Cremona transformation resolving both double points.
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Involutions for quartic pencils with two double points

p1 p2p3 p4

p5

p6

p7

p8

p9

p10 pI(1)
10 (p)

I(2)
1,5(p)
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Quadratic Manin maps for special quartic pencils

p1

p2

p3

p4

p5

p6

p7 p8

p9

p10

C

A

B

Geometry of base points of a projectively symmetric quartic
pencil with two double points E = P(4; p1, . . . ,p8,p2

9,p
2
10).
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Quadratic Manin maps for special quartic pencils

Theorem [Petrera, S., Wei, Zander’ 2021].

1. The projective involution σ can be represented as

σ = I(2)
1,8 = I(2)

2,7 = I(2)
3,6 = I(2)

4,5 .

2. The map

φ = I(2)
i,k ◦ I(2)

j,k = I(1)
9 ◦ σ = σ ◦ I(1)

10 ,

(i , j) ∈ {(1,2), (2,3), (3,4), (5,6), (6,7), (7,8)} and
k ∈ {1, . . . ,8} distinct from i , j , is a birational map of
degree 2, with the singularity confinement patterns:

(p8p10)→ p1 → p2 → p3 → p4 → (p5p9),

(p4p10)→ p5 → p6 → p7 → p8 → (p1p9),

(p4p8)→ p9 → p10 → (p1p5).
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Kahan discretization for (γ1, γ2, γ3) = (1,2,3)

p1 p2 p3p4 p5 p6

p7

p9

p10

p11
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Kahan discretization for (γ1, γ2, γ3) = (1,2,3)

I Invariant pencil of sextic curves with 3 double points and 2
triple points: E = P(6; p1, . . . ,p6,p2

7,p
2
8,p

2
9,p

3
10,p

3
11).

I I(φ) = {p6,p9,p11}, I(φ−1) = {p1,p7,p10}.
I Singularity confinement patterns:

(p9p11)→ p1 → p2 → p3 → p4 → p5 → p6 → (p7p10),

(p6p11)→ p7 → p8 → p9 → (p1p10),

(p6p9)→ p10 → p11 → (p1p7).

I What is the geometric representation?
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Kahan discretization for (γ1, γ2, γ3) = (1,2,3)

Manin involutions for E = P(6; p1, . . . ,p6,p2
7,p

2
8,p

2
9,p

3
10,p

3
11):

I I(4)
i,j,k , i , j ∈ {1, . . . ,6}, k ∈ {7,8,9}: e.g., I(4)

i,j,9 is defined in
terms of intersection of E with quartics of the pencil

P(4; pi ,pj ,p7,p8,p2
9,p

2
10,p

2
11).

I I(3)
i,k , i ∈ {1, . . . ,6}, k ∈ {10,11}: e.g., I(3)

i,10 is defined in
terms of intersection of E with cubics of the pencil

P(3; pi ,p7,p8,p9,p2
10,p11).

Theorem [Petrera, S, Wei, Zander’ 2021]. The map φ can be
represented as compositions of (suitably defined) Manin
involutions in the following ways:

φ = I(4)
i,k ,m ◦ I(4)

j,k ,m = I(3)
i,n ◦ I(3)

j,n

for any (i , j) ∈ {(1,2), (2,3), (3,4), (4,5), (5,6)},
k ∈ {1, . . . ,6} \ {i , j}, and m ∈ {7,8,9}, n ∈ {10,11}.
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Conclusions, work in progress and open problems

I Classification of integrable cases of Kahan discretization
for the (γ1, γ2, γ3)-family.

I Geometric construction of Manin involutions for pencils of
elliptic curves of degree 4 and 6.

I Integrable Kahan discretizations for (γ1, γ2, γ3) = (1,1,1),
(1,1,2), (1,2,3) are Manin maps for pencils of elliptic
curves of degree 3, 4, 6, resp.

I Special geometry of base points ensures deg = 2 for
certain Manin maps.

I Work in progress: singularity structure and geometric
description for higher-dimensional examples, e.g., Kahan
discretization of the Euler top (3D, g = 1) or the Clebsch
system (6D, g = 2).
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