Positivity, higher Teichmüller spaces and (non-commutative) cluster algebras

Anna Wienhard Universität Heidelberg

Online seminar: Algebra, Geometry \& Physics
April 20,2021

The circle

The real line $(\mathbb{R},<)$
covers the circle and induces a cyclic order
(x, y, z) is a positive triple

Recast this ordering on $\mathbb{R P}^{1}$
Assume

$$
x=\mathbb{R} e_{2}, z=\mathbb{R} e_{1}
$$

every $y \neq z$ can be written as $y=\left(\begin{array}{ll}1 & t_{y} \\ 0 & 1\end{array}\right) \cdot e_{2}$ with $t_{y} \in \mathbb{R}$.

The triple ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) is positive if and only if $t_{y} \in \mathbb{R}_{>0}$.

Inside: the hyperbolic plane

Poincare disk model

$$
\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}=\{z \in \mathbb{C} \mid 1-\bar{z} z>0\}
$$

There is a rich interplay between the interior and the boundary circle

Hyperbolic structures on surfaces

Surfaces of genus >1 naturally carry a hyperbolic structure.

$\operatorname{Hyp}(S)=\{(X, f) \mid X$ hyperbolic surface, $f: S \rightarrow X$ homeo $\} /^{\sim}$

quotient by mapping class group is moduli space $\mathscr{M}(S)$
$\operatorname{Hom}\left(\pi_{1}(S), \operatorname{PSp}(2, \mathbb{R})\right) / \mathrm{PSp}(2, \mathbb{R})$

Hyperbolic structures

The space of hyperbolic structures $\operatorname{Hyp}(S) \subset \operatorname{Hom}\left(\pi_{1}(S), \operatorname{PSL}(2, \mathbb{R})\right) / \operatorname{PSL}(2, \mathbb{R})$ is a connected component consisting entirely of discrete and faithful representations.
$\operatorname{Hyp}(S)$ can be identified with the Teichmüller space of S.

Representations in $\operatorname{Hyp}(S)$ are positive representations
The action of $\rho\left(\pi_{1}(S)\right)$ on the circle is by orientation preserving homeomorphism.
For every representation $\rho \in \operatorname{Hyp}(S)$ there is an equivariant map $\xi: \mathbb{R}^{1} \cong \partial \pi_{1}(S) \rightarrow \mathbb{R} \mathbb{P}^{1}$
sending positive triples to positive triples.

Representations in $\operatorname{Hyp}(S)$ are those of maximal Euler number

The Euler number is the obstruction to lifting to universal covering $\widetilde{\operatorname{PL}(2, \mathbb{R})}$

$$
\begin{aligned}
& \rho: \pi_{1}(S)=\left\{a_{1}, b_{1}, \cdots a_{g}, b_{g} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}=1\right\} \rightarrow \operatorname{PSL}(2, \mathbb{R}) \\
& \operatorname{eu}(\rho)=\widetilde{A_{1}} \widetilde{B_{1}} \overparen{A_{1}^{-1}} \widetilde{B_{1}^{-1}} \cdots \widetilde{A_{g}} \widetilde{B_{g}} \widetilde{A_{g}^{-1}} \overparen{B_{g}^{-1}} \in \mathbb{Z} \cap[2-2 g, 2 g-2]
\end{aligned}
$$

Coordinates

$\mathrm{S}=\mathrm{S}(\mathrm{g}, \mathrm{n})$ surface with punctures - pick an ideal triangulation

The flip

\mathscr{X}-coordinates: $\quad x^{\prime}=x^{-1} \quad a^{\prime}=a(1+x)^{-1} \quad d^{\prime}=d(1+x)$

$$
b^{\prime}=b\left(1+x^{-1}\right) \quad c^{\prime}=c\left(1+x^{-1}\right)^{-1}
$$

\mathscr{A}-coordinates: $\quad x^{\prime}=\frac{a c+b d}{x}$
Ptolemy equation

These are examples of cluster transformations

Representation varieties

Many different tools to study the same object !
G-Higgs bundles on X
$\mathscr{M}_{\text {Higgs }}(X, G)$

	$\mathscr{M}_{\text {Higgs }}(X, G)$	(E, ϕ)
Hitchin fibration	\downarrow	E holomorphic vector bundle
	$\oplus_{i=1}^{r_{G}} \mathrm{H}^{0}\left(X, K^{m_{i}}\right)$	ϕ holomorphic one form with values in End (E)

Higher Teichmüller spaces

(Unions of) connected components $\operatorname{Hom}\left(\pi_{1}(S), G\right) / G$ consisting entirely of discrete and faithful representations

Hitchin component
G split real group
$\operatorname{SL}(n, \mathbb{R}), \operatorname{Sp}(2 n, \mathbb{R}), \mathrm{SO}(n, n+1), \mathrm{SO}(n, n)$
deformations of
$\pi_{\text {princ }}{ }^{\circ} l: \pi_{1}(S) \rightarrow \mathrm{SL}(2, \mathbb{R}) \rightarrow G$
section of Hitchin fibration
$\operatorname{Hit}(S, G) \cong \mathbb{R}^{(2 g-2) \operatorname{dim} G}$
[Hitchin, Goldman, Choi-Goldman]
[Labourie, Fock-Goncharov]

Maximal representations
G Hermitian type
$\operatorname{Sp}(2 n, \mathbb{R}), \mathrm{SU}(n, m), \mathrm{SO}(2, n), \mathrm{SO} *(2 n)$
$\operatorname{Max}(S, G)=\tau^{-1}\left((2 g-2) \mathrm{rk}_{G}\right)$
several components nontrivial topology

[Goldman, Toledo, Hernandez]

[Burger-lozzi-W] [Bradlow-GarciaPrada-Gothen]
connection to total positivity, cluster algebras, physics ...

Total positivity and Hitchin components

An invertible matrix is totally positive if every minor is positive. A totally positive lower triangular unipotent matrix is one, where every possibly nonzero minor is positive.

Triple of flags $F_{0}, F, F_{\infty} \in \mathscr{F}\left(\mathbb{R}^{n}\right)$ is positive if

$$
F=u_{F} \cdot F_{0}
$$

for a totally positive unipotent matrix u_{F}

A representation $\rho: \pi_{1}(S) \rightarrow \operatorname{SL}(n, \mathbb{R})$ is Hitchin iff there exists a positive ρ-equivariant boundary map $\xi: \mathbb{R} \mathbb{P}^{1} \rightarrow \mathscr{F}\left(\mathbb{R}^{n}\right)$
[Fock-Goncharov, Labourie, Guichard]

General characterization in terms of Lusztig total positivity. [Fock-Goncharov] Fock-Goncharov cluster coordinates associated to ideal triangulation.

Maximal representations

Associated to $\rho: \pi_{1}(S) \rightarrow \operatorname{Sp}(2 n, \mathbb{R})$ there is an invariant
$\tau(\rho)=\prod_{i=1}^{g}\left[\tilde{\rho}\left(a_{i}\right), \tilde{\rho}\left(b_{i}\right)\right] \in \mathbb{Z} \cap[(2-2 g) n,(2 g-2) n]$
$\pi_{1}(S)=<a_{1}, b_{1}, \cdots a_{g}, b_{g}\left|\prod_{i=1}^{g}\left[a_{i}, b_{i}\right]=1\right\rangle$
$\rho: \pi_{1}(S) \rightarrow \operatorname{Sp}(2 n, \mathbb{R})$

Maximal representations $\operatorname{Max}(S, \operatorname{Sp}(2 n, \mathbb{R})):=\tau^{-1}((2 g-2) n)$

1) $\operatorname{Max}(S, \operatorname{Sp}(2, \mathbb{R}))=\operatorname{Hyp}(S) \quad$ [Goldman]
2) Maximal representations are discrete and faithful [Burger-lozzi-w]
3) For $\operatorname{Sp}(4, \mathbb{R})$ there are components where every representation is Zariski-dense.

Maslov index

Space of Lagrangians: $L\left(\mathbb{R}^{2 n}\right)=\left\{L<\mathbb{R}^{2 n}|\operatorname{dim} L=n, \omega|_{L \times L}=0\right\}$
$L_{0}, L_{\infty} \in \mathrm{L}\left(\mathbb{R}^{2 n}\right), L_{0} \oplus L_{\infty}=\mathbb{R}^{2 n}$
Any L is the graph of a map $M_{L}: L_{0} \rightarrow L_{\infty}$, set $\alpha_{L}(v):=\omega\left(v, M_{l}(v)\right)$

Maslov index $\mu\left(L_{0}, L, L_{\infty}\right)=\operatorname{sign}\left(\alpha_{L}\right)$
Triple L_{0}, L, L_{∞} is positive if $\mu\left(L_{0}, L, L_{\infty}\right)=n$
Crossratio $\left[L_{0}, L, L_{\infty}, L^{\prime}\right]=\operatorname{ev}\left(M_{L^{\prime}}^{-1} \circ M\right)$

A representation $\rho: \pi_{1}(S) \rightarrow \operatorname{Sp}(2 n, \mathbb{R})$ is maximal iff there is a positive ρ-equivariant boundary map $\xi: \mathbb{R} \mathbb{P}^{1} \rightarrow \mathrm{~L}\left(\mathbb{R}^{2 n}\right)$, i.e. for all (x, y, z) in $\mathbb{R} \mathbb{P}^{1}$ positively oriented, $\mu(\xi(x), \xi(y), \xi(z))=n$

Unifying picture

G simple non-compact real Lie group, Δ set of simple roots, $\Theta \subset \Delta$ P_{Θ} parabolic subgroup, L_{Θ} its Levi subgroup, U_{Θ} its unipotent radical Decompose $\mathfrak{u t}_{\Theta}$ as a L_{Θ}° representation, simple pieces $\mathfrak{t}_{\alpha}, \alpha \in \Theta$
G has Θ-positive structure if $\exists L_{\Theta}^{\circ}$-invariant convex cone $c_{\alpha} \subset \mathfrak{u}_{\alpha}, \forall \alpha \in \Theta$

There are four families of G admitting a Θ-positive structure:

1) G split real Lie group, $\Theta=\Delta, P_{\Delta}$ minimal parabolic
2) G Hermitian Lie group of tube type, $\Theta=\left\{\alpha_{\Theta}\right\}, P_{\alpha_{\Theta}}$ maximal parabolic
3) $G=\mathrm{SO}(p, q), p<q, \Theta=\Delta-\left\{\alpha_{p}\right\}, P_{\Theta}$ stabilizer of $\left(F_{1}, \cdots, F_{p-1}\right)$
partial isotropic flag
4) $G=F_{4}, E_{6}, E_{7}, E_{8}, \Theta=\left\{\alpha_{1}, \alpha_{2}\right\}$

The non-negative semigroup $U_{\Theta}^{\geq 0}$ is generated by $\exp \left(c_{\alpha}\right), \alpha \in \Theta$

The Θ-Weyl group

1) G split real Lie group, P_{Δ} minimal parabolic $W(\Theta)=W$
non-commutative
2) G Hermitian of tube type, $P_{\alpha_{\Theta}}$ maximal parabolic $W(\Theta)=W_{A_{1}}$

3) $G=\mathrm{SO}(p, q), p<q, P_{\Delta-\left\{\alpha_{p}\right\}}$ stabilizer of $\left(F_{1}, \cdots, F_{p-1}\right)$

$$
W(\Theta)=W_{B_{p-1}}
$$

4) $G=F_{4}, E_{6}, E_{7}, E_{8}, P_{\left\{\alpha_{1}, \alpha_{2}\right\}}$
 B_{n}-theory

We have $\mathfrak{u}_{\alpha}=\mathfrak{g}_{\alpha}$ if $\alpha \neq \alpha_{\Theta}$, and $\operatorname{dim} \mathfrak{u}_{\alpha_{\Theta}}>1$.
non-commutative G_{2}-theory

There is a subgroup $W(\Theta)<W$ of the Weyl group that governs the combinatorics and gives a parametrization of the positive semigroup $U_{\Theta}^{>0}$
[Guichard-W]
"Almost everything that works for total positivity, works for Θ-positivity with W replaced by $W(\Theta)$ "

Higher Teichmüller spaces

A representation $\rho: \pi_{1}(S) \rightarrow G$ is Θ-positive if there is a ρ-equivariant positive boundary map $\xi: \mathbb{R P}^{1} \rightarrow G / P_{\Theta}$

A Θ-positive representation $\rho: \pi_{1}(S) \rightarrow G$ is discrete and faithful. (In fact it is Θ-Anosov) The set of Θ-positive representations is open in $\operatorname{Hom}\left(\pi_{1}(S), G\right) / G$.

Conjecture:

1) Higher Teichmüller spaces exist iff G admits a Θ-positive structure.
2) Additional connected components in $\operatorname{Hom}\left(\pi_{1}(S), G\right) / G$ exist iff
G admits a Θ-positive structure.

Additional components confirmed for G admitting a Θ-positive structure by Higgs bundle methods
[Aparicio-Arroyo-Bradlow-Collier-García-Prada-Gothen-Oliveira]

Non-commutative coordinates

$\mathrm{S}=\mathrm{S}(\mathrm{g}, \mathrm{n})$ surface with punctures - pick ideal triangulation
\mathscr{X}-coordinates
framing by $\operatorname{Lag}\left(\mathbb{R}^{2 n}\right)$
\mathscr{A}-coordinates
framing by isotropic bases $\left(v_{1}, \cdots, v_{n}\right)$

[Alessandrini-Guichard-Rogozinnikov-W]

The \mathscr{A}-flip

\mathscr{A}-coordinates: $\Lambda_{i j} \in \operatorname{GL}(\mathrm{n}, \mathbb{R}), \Lambda_{j i}=-\Lambda_{i j}^{T}$

Ptolemy equation $\Lambda_{24}=\Lambda_{23} \Lambda_{13}^{-1} \Lambda_{14}+\Lambda_{21} \Lambda_{31}^{-1} \Lambda_{34}$
Triangle equation

$$
\Lambda_{32}^{-1} \Lambda_{31} \Lambda_{21}^{-1} \Lambda_{23} \Lambda_{13}^{-1} \Lambda_{12}=-1 \quad \Lambda_{23} \Lambda_{13}^{-1} \Lambda_{12}+\Lambda_{21} \Lambda_{31}^{-1} \Lambda_{32}=0
$$

Realization of Berenstein-Retakh non-commutative cluster algebra

The \mathscr{X}-flip

$$
\left[L_{1}, L_{2}, L_{3}, L_{4}\right]=\operatorname{ev}\left(-C R_{1234}\right), C R_{1234}=-\Lambda_{41}^{-1} \Lambda_{43} \Lambda_{23}^{-1} \Lambda_{21}
$$

$$
\begin{aligned}
& C R_{4231}=\Lambda_{24}^{-1} \cdot C R_{2314}^{-T} \cdot \Lambda_{24} x^{\prime}=x^{-1} \\
& C R_{2534}=\left(\mathrm{Id}+C R_{2344}\right) C R_{2531} d^{\prime}=d(1+x) \\
& C R_{4316}=C R_{4216}\left(\mathrm{Id}+C R_{4231}^{-1}\right) b^{\prime}=b\left(1+x^{-1}\right) \\
& C R_{2348}=C R_{2148}\left(\mathrm{Id}+C R_{2314}^{-1}\right)^{-1} c^{\prime}=c\left(1+x^{-1}\right)^{-1} \\
& C R_{3714}=\left(\mathrm{Id}+C R_{3142}\right)^{-2} C R_{3712} a^{\prime}=a(1+x)^{-1} \\
& \\
& \text { Upshot: This is a noncommutative S. } \mathrm{S}^{\prime} \text {)-Theory }
\end{aligned}
$$

Symplectic groups over non-commutative rings

A non-commutative associative algebra, $\sigma: A \rightarrow A$ involution
$\omega: A^{2} \times A^{2} \rightarrow A, \omega(v, w):=\sigma(v)^{T}\left(\begin{array}{cc}0 & \mathrm{Id} \\ -\mathrm{Id} & 0\end{array}\right) w$
$\operatorname{Sp}_{2}(A, \sigma, \omega):=\left\{g \in \mathrm{GL}_{2}(A) \mid \omega(g \cdot v, g \cdot w)=\omega(v, w) \forall v, w \in A^{2}\right\}$
Example: $\operatorname{Sp}(2 n, \mathbb{R})=\operatorname{Spp}_{2}(A, \sigma, \omega)$ with $A=\operatorname{Mat}(n, \mathbb{R}), \sigma(X)=X^{T}$
Symplectic group is a Sp_{2} over a non-commutative ring
[Berentstein-Retakh-Rogozinnikov-W]
$A_{\text {sym }}=\{X \in A \mid \sigma(X)=X\}, A_{\text {sym }}^{+}<A_{\text {sym }}$ open cone
$\mathscr{H}:=\left\{Z \in A_{\text {sym }}^{\mathbb{C}} \mid \operatorname{Im}(Z) \in A_{\text {sym }}^{+}\right\} \quad$ hyperbolic plane over A.
$\mathrm{Sp}_{2}(A, \sigma, \omega)$ acts on \mathscr{H}_{n} by fractional linear transformations
New model for the symmetric space associated to $\operatorname{Sp}(2 n, \mathbb{C})$

$$
\mathscr{H}_{\mathbb{C}}:=\left\{Z_{1}+Z_{2} J \mid Z_{1} \in \operatorname{Sym}_{n}(\mathbb{C}), Z_{2} \in \operatorname{Herm}_{n}^{+}(\mathbb{C})\right\} \subset \operatorname{Mat}_{n}(\mathbb{H})
$$

Conjectures and Questions

1) There are (partially) non-commutative cluster algebras for B_{n} and G_{2} (arising geometrically \mathscr{A}-coordinates for Θ-positive representations).
2) Are there non-commutative Hitchin fibrations ?
3) Are there quantum groups and canonical bases adapted to Θ-positivity?
4) There is a theory of generalized opers.
5) What is the connections to physics ?
