Positivity, higher Teichmüller spaces and (non-commutative) cluster algebras

Anna Wienhard Universität Heidelberg

Online seminar: Algebra, Geometry & Physics April 20,2021

STRUCTURES CLUSTER OF EXCELLENCE

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

The circle

The real line $(\mathbb{R}, <)$

covers the circle and induces a cyclic order

(x,y,z) is a positive triple

Recast this ordering on \mathbb{RP}^1

Assume $x = \mathbb{R}e_2, z = \mathbb{R}e_1$ every $y \neq z$ can be written as $y = \begin{pmatrix} 1 & t_y \\ 0 & 1 \end{pmatrix} \cdot e_2$ with $t_y \in \mathbb{R}$.

The triple (x,y,z) is positive if and only if $t_y \in \mathbb{R}_{>0}$.

Inside: the hyperbolic plane

Poincare disk model $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\} = \{z \in \mathbb{C} \mid 1 - \overline{z}z > 0\}$

There is a rich interplay between the interior and the boundary circle

Hyperbolic structures on surfaces

Surfaces of genus >1 naturally carry a hyperbolic structure.

$$\begin{split} \text{Hyp}(S) &= \{(X,f) \, | \, X \, \text{hyperbolic surface}, f : S \to X \, \text{homeo} \} / \tilde{} \\ & \text{quotient by mapping class group} \\ & \text{is moduli space } \mathscr{M}(S) \end{split}$$

Hom($\pi_1(S)$, PSp(2, \mathbb{R}))/PSp(2, \mathbb{R})

Hyperbolic structures

The space of hyperbolic structures $Hyp(S) \subset Hom(\pi_1(S), PSL(2,\mathbb{R}))/PSL(2,\mathbb{R})$ is a connected component consisting entirely of discrete and faithful representations.

Hyp(S) can be identified with the Teichmüller space of S.

Representations in Hyp(S) are positive representations

The action of $\rho(\pi_1(S))$ on the circle is by orientation preserving homeomorphism. For every representation $\rho \in \text{Hyp}(S)$ there is an equivariant map $\xi : \mathbb{RP}^1 \cong \partial \pi_1(S) \to \mathbb{RP}^1$ sending positive triples to positive triples.

Representations in Hyp(S) are those of maximal Euler number

[Goldman]

The Euler number is the obstruction to lifting to universal covering $PSL(2,\mathbb{R})$ $\rho: \pi_1(S) = \{a_1, b_1, \dots a_g, b_g \mid a_1 b_1 a_1^{-1} b_1^{-1} \dots a_g b_g a_g^{-1} b_g^{-1} = 1\} \rightarrow PSL(2,\mathbb{R})$ $eu(\rho) = \widetilde{A_1} \widetilde{B_1} \widetilde{A_1^{-1}} \widetilde{B_1^{-1}} \dots \widetilde{A_g} \widetilde{B_g} \widetilde{A_g^{-1}} \widetilde{B_g^{-1}} \in \mathbb{Z} \cap [2 - 2g, 2g - 2]$

Coordinates

S = S(g,n) surface with punctures — pick an ideal triangulation

ac + bd

 $\boldsymbol{\chi}$

$$\mathscr{A}$$
-coordinates: $x' =$

Ptolemy equation

These are examples of cluster transformations

Representation varieties

Higher Teichmüller spaces

(Unions of) connected components $Hom(\pi_1(S), G)/G$ consisting entirely of discrete and faithful representations

Hitchin component

G split real group SL(n, \mathbb{R}), Sp(2n, \mathbb{R}), SO(n, n + 1), SO(n, n)

deformations of $\pi_{princ} \circ \iota : \pi_1(S) \to SL(2,\mathbb{R}) \to G$

section of Hitchin fibration Hit(S, G) $\cong \mathbb{R}^{(2g-2)\dim G}$

[Hitchin, Goldman, Choi-Goldman] [Labourie, Fock-Goncharov]

connection to total positivity, cluster algebras, physics ... [Gaiotto-Moore-Neitzke] Maximal representations *G* Hermitian type $Sp(2n, \mathbb{R}), SU(n, m), SO(2, n), SO^*(2n)$

$$\operatorname{Max}(S,G) = \tau^{-1}((2g-2)\operatorname{rk}_G)$$

several components nontrivial topology

[Goldman, Toledo, Hernandez] [Burger-Iozzi-W] [Bradlow-GarciaPrada-Gothen]

Total positivity and Hitchin components

An invertible matrix is totally positive if every minor is positive. A totally positive lower triangular unipotent matrix is one, where every possibly nonzero minor is positive.

Triple of flags $F_0, F, F_\infty \in \mathscr{F}(\mathbb{R}^n)$ is positive if

$$F = u_F \cdot F_0$$

for a totally positive unipotent matrix u_F

A representation $\rho : \pi_1(S) \to SL(n, \mathbb{R})$ is Hitchin iff there exists a positive ρ -equivariant boundary map $\xi : \mathbb{RP}^1 \to \mathscr{F}(\mathbb{R}^n)$ [Fock-Goncharov, Labourie, Guichard]

General characterization in terms of Lusztig total positivity. [Fock-Goncharov] Fock-Goncharov cluster coordinates associated to ideal triangulation.

Maximal representations

Associated to $\rho: \pi_1(S) \to \operatorname{Sp}(2n, \mathbb{R})$ there is an invariant $\widetilde{\rho}$ \mathbb{R} $\tau(\rho) = \prod_{i=1}^{g} [\tilde{\rho}(a_i), \tilde{\rho}(b_i)] \in \mathbb{Z} \cap [(2 - 2g)n, (2g - 2)n]$ $\pi_1(S) = \langle a_1, b_1, \cdots a_g, b_g | \prod_{i=1}^g [a_i, b_i] = 1 \rangle$ $\rho: \pi_1(S) \to \operatorname{Sp}(2n, \mathbb{R})$

Maximal representations $Max(S, Sp(2n, \mathbb{R})) := \tau^{-1}((2g-2)n)$

1) $Max(S, Sp(2,\mathbb{R})) = Hyp(S)$ [Goldman]

2) Maximal representations are discrete and faithful [Burger-lozzi-W]

3) For $Sp(4,\mathbb{R})$ there are components where every representation is Zariski-dense. [Gothen, Guichard-W, Bradlow-Garcia Prada-Gothen]

Maslov index

Space of Lagrangians: $L(\mathbb{R}^{2n}) = \{L < \mathbb{R}^{2n} \mid \dim L = n, \omega \mid_{L \times L} = 0\}$ $L_0, L_{\infty} \in L(\mathbb{R}^{2n}), L_0 \oplus L_{\infty} = \mathbb{R}^{2n}$ Any *L* is the graph of a map $M_L : L_0 \to L_{\infty}$, set $\alpha_L(v) := \omega(v, M_l(v))$

Maslov index $\mu(L_0, L, L_\infty) = \text{sign}(\alpha_L)$ Triple L_0, L, L_∞ is positive if $\mu(L_0, L, L_\infty) = n$

Crossratio $[L_0, L, L_\infty, L'] = \operatorname{ev}(M_{L'}^{-1} \circ M)$

A representation $\rho : \pi_1(S) \to \operatorname{Sp}(2n, \mathbb{R})$ is maximal iff there is a positive ρ -equivariant boundary map $\xi : \mathbb{RP}^1 \to L(\mathbb{R}^{2n})$, i.e. for all (x, y, z) in \mathbb{RP}^1 positively oriented, $\mu(\xi(x), \xi(y), \xi(z)) = n$ [Burger-lozzi-W, Burger-lozzi-Labourie-W]

Unifying picture

G simple non-compact real Lie group, Δ set of simple roots, $\Theta \subset \Delta$ P_{Θ} parabolic subgroup, L_{Θ} its Levi subgroup, U_{Θ} its unipotent radical Decompose \mathfrak{u}_{Θ} as a L_{Θ}° representation, simple pieces $\mathfrak{u}_{\alpha}, \alpha \in \Theta$

G has Θ -positive structure if $\exists L_{\Theta}^{\circ}$ -invariant convex cone $c_{\alpha} \subset \mathfrak{u}_{\alpha}, \forall \alpha \in \Theta$

There are four families of G admitting a Θ -positive structure:

- 1) G split real Lie group, $\Theta = \Delta$, P_{Δ} minimal parabolic
- 2) *G* Hermitian Lie group of tube type, $\Theta = \{\alpha_{\Theta}\}, P_{\alpha_{\Theta}}$ maximal parabolic 3) $G = SO(p, q), p < q, \ \Theta = \Delta - \{\alpha_p\}, P_{\Theta}$ stabilizer of (F_1, \dots, F_{p-1}) partial isotropic flag 4) $G = F_4, E_6, E_7, E_8, \ \Theta = \{\alpha_1, \alpha_2\}$ [Guichard-W]

The non-negative semigroup $U_{\Theta}^{\geq 0}$ is generated by $\exp(c_{\alpha}), \alpha \in \Theta$

The Θ -Weyl group

non-commutative Sp_2 -theory 1) G split real Lie group, P_{Λ} minimal parabolic $W(\Theta) = W$ 2) *G* Hermitian of tube type, $P_{\alpha_{\Theta}}$ maximal parabolic $W(\Theta) = W_{A_1}$ C_{h} 3) $G = SO(p,q), p < q, P_{\Delta - \{\alpha_p\}}$ stabilizer of (F_1, \dots, F_{p-1}) $(\Theta) = W_{B_{p-1}}$ non-commutative B_n -theory $W(\Theta) = W_{G_2}$ 4) $G = F_4, E_6, E_7, E_8, P_{\{\alpha_1, \alpha_2\}}$ non-commutative G_2 -theory We have $\mathfrak{u}_{\alpha} = \mathfrak{g}_{\alpha}$ if $\alpha \neq \alpha_{\Theta}$, and dim $\mathfrak{u}_{\alpha_{\Theta}} > 1$.

There is a subgroup $W(\Theta) < W$ of the Weyl group that governs the combinatorics and gives a parametrization of the positive semigroup $U_{\Theta}^{>0}$ [Guichard-W]

"Almost everything that works for total positivity, works for Θ -positivity with W replaced by $W(\Theta)$ "

Higher Teichmüller spaces

A representation $\rho : \pi_1(S) \to G$ is Θ -positive if there is a ρ -equivariant positive boundary map $\xi : \mathbb{RP}^1 \to G/P_{\Theta}$

A Θ -positive representation $\rho : \pi_1(S) \to G$ is discrete and faithful. (In fact it is Θ -Anosov) The set of Θ -positive representations is open in $\operatorname{Hom}(\pi_1(S), G)/G$. [Guichard-Labourie-W]

Conjecture:

 Higher Teichmüller spaces exist iff *G* admits a Θ-positive structure.
Additional connected components in Hom(π₁(S), G)/G exist iff *G* admits a Θ-positive structure.

Additional components confirmed for G admitting a Θ -positive structure by Higgs bundle methods [Aparicio-Arroyo-Bradlow-Collier-García-Prada-Gothen-Oliveira]

Non-commutative coordinates

S = S(g,n) surface with punctures — pick ideal triangulation

 \mathscr{X} -coordinates framing by $Lag(\mathbb{R}^{2n})$

A-coordinates

[Alessandrini-Guichard-Rogozinnikov-W]

The *A*-flip

 \mathscr{A} -coordinates: $\Lambda_{ij} \in GL(n, \mathbb{R}), \Lambda_{ji} = -\Lambda_{ij}^T$

Ptolemy equation $\Lambda_{24} = \Lambda_{23}\Lambda_{13}^{-1}\Lambda_{14} + \Lambda_{21}\Lambda_{31}^{-1}\Lambda_{34}$

Triangle equation

 $\Lambda_{32}^{-1}\Lambda_{31}\Lambda_{21}^{-1}\Lambda_{23}\Lambda_{13}^{-1}\Lambda_{12} = -1 \qquad \Lambda_{23}\Lambda_{13}^{-1}\Lambda_{12} + \Lambda_{21}\Lambda_{31}^{-1}\Lambda_{32} = 0$

Realization of Berenstein-Retakh non-commutative cluster algebra

 $[L_1, L_2, L_3, L_4] = ev(-CR_{1234}), CR_{1234} = -\Lambda_{41}^{-1}\Lambda_{43}\Lambda_{23}^{-1}\Lambda_{23}$

 $CR_{4231} = \Lambda_{24}^{-1} \cdot CR_{2314}^{-T} \cdot \Lambda_{24} \qquad x' = x^{-1}$ $CR_{2534} = (\text{Id} + CR_{2314})CR_{2531}$ d' = d(1 + x) $CR_{4316} = CR_{4216}(\text{Id} + CR_{4231}^{-1})$ $b' = b(1 + x^{-1})$ $CR_{2348} = CR_{2148}(\text{Id} + CR_{2314}^{-1})^{-1}$ $c' = c(1 + x^{-1})^{-1}$ $CR_{3714} = (\mathrm{Id} + CR_{3142})^{-1}CR_{3712}$

 $a' = a(1+x)^{-1}$

Upshot: This is a noncommutative Sp(2)-The leory

Symplectic groups over non-commutative rings

A non-commutative associative algebra, $\sigma: A \to A$ involution

$$\omega : A^2 \times A^2 \to A, \ \omega(v, w) := \sigma(v)^T \begin{pmatrix} 0 & \mathrm{Id} \\ -\mathrm{Id} & 0 \end{pmatrix} w$$

 $\operatorname{Sp}_2(A, \sigma, \omega) := \{ g \in \operatorname{GL}_2(A) \mid \omega(g \cdot v, g \cdot w) = \omega(v, w) \,\forall v, w \in A^2 \}$

Example: Sp(2n, \mathbb{R}) = Sp₂(A, σ , ω) with $A = Mat(n, \mathbb{R}), \sigma(X) = X^T$

Symplectic group is a $\,Sp_2\,$ over a non-commutative ring

[Berentstein-Retakh-Rogozinnikov-W]

$$\begin{split} A_{sym} &= \{X \in A \mid \sigma(X) = X\}, \ A_{sym}^+ < A_{sym} \text{ open cone} \\ \mathscr{H} &:= \{Z \in A_{sym}^{\mathbb{C}} \mid \mathrm{Im}(Z) \in A_{sym}^+\} \qquad \text{hyperbolic plane over } A. \\ \mathrm{Sp}_2(A, \sigma, \omega) \text{ acts on } \mathscr{H}_n \text{ by fractional linear transformations} \\ \mathrm{New model for the symmetric space associated to } \mathrm{Sp}(2n, \mathbb{C}) \end{split}$$

 $\mathscr{H}_{\mathbb{C}} := \{ Z_1 + Z_2 J \mid Z_1 \in \operatorname{Sym}_n(\mathbb{C}), Z_2 \in \operatorname{Herm}_n^+(\mathbb{C}) \} \subset \operatorname{Mat}_n(\mathbb{H})$

Conjectures and Questions

1) There are (partially) non-commutative cluster algebras for B_n and G_2 (arising geometrically \mathscr{A} -coordinates for Θ -positive representations).

2) Are there non-commutative Hitchin fibrations?

3) Are there quantum groups and canonical bases adapted to $\Theta\mbox{-}positivity$?

4) There is a theory of generalized opers.

[Collier-Sanders]

5) What is the connections to physics?

[Gaiotto-Moore-Neitzke]