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Goal

Let M, N be smooth manifolds of dimension m, n. Long standing
problems: Understand

Embedding spaces (knot spaces)

Emb(M,N) = {f : M → N | f smooth embedding} ⊂ C∞(M,N)

Diffeomorphism groups Diff(M)

with the C∞ topology.
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Goal

Concrete questions:

π0(Emb(M,N)) =?, i.e., classify embeddings modulo isotopy.
(knot theory)

Higher πk (−) =?

Simpler question: Rational homotopy groups πk (−) ⊗ Q =? for
k ≥ 2, or rational homotopy type.
Hope: Possible for wide class of manifolds in a few years.
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Rational homotopy theory I

One has a (Quillen) equivalence

| − | : sSet� Top : S

and a (Quillen) adjunction

Ω : sSet� dgcaop : G

between the categories of topological spaces, simplicial sets
and differential graded commutative algebras /Q.

In particular, for X a topological space the differential graded
commutative algebra Ω(X) are the (PL) differential forms on
X .
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Rational homotopy theory II

Let X ,Y be (simply connected) spaces. A map f : X → Y is
a weak homotopy equivalence if f induces bijections
πk (X)→ πk (Y).
a rational (homotopy) equivalence if f induces bijections
π

Q
k (X)→ π

Q
k (Y), with

π
Q
k (X) := πk (X) ⊗Z Q.

A model for X is a dg comm. alg. A that is connected to Ω(X)
via a chain of quasi-isomorphisms.

A
∼
−→ · · ·

∼
←− Ω(X).

(Quasi-isomorphism:=dg comm. alg. morphism inducing
isom. on cohomology)
For good X (e.g. simply connected) one can recover πQ

k (X)
from a model for X , and X , Y are rationally equivalent iff they
have quasi-isomorphic models.
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Mapping spaces

For X , Y topological spaces (simplicial sets) we may consider
the mapping space Map(X ,Y) = {f : X → Y | f continuos}.

Since dgca is a model category, we may also define the
(derived) mapping space Map(A ,B) for A ,B ∈ dgca.

By functoriality we have a map

Map(X ,Y)→ Map(Ω(Y),Ω(X)).

(Haefliger, Sullivan ’80) For good X ,Y the above map
induces componentwise rational homotopy equivalences.

Map(X ,Y)f
∼Q
−−→ Map(Ω(Y),Ω(X))Ω(f),

and a finite-to-one map on π0.
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Mapping spaces – Example

Map(S1,S1) ' Z × S1.

Model for S1:
A = Q[ω]

∼
−→ Ω(S1),

with ω a variable of degree 1.

Map(A ,A) ' |Hom(A ,A ⊗ Ω(∆•))|

Any dgca morphism A → B is determined by image of ω,
hence one can show

πk (Map(A ,A)) =


Q k = 0

Q k = 1

∗ k ≥ 2.
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Towards Emb(M,N)

We ”can understand” mapping spaces.

We would like to see Emb(M,N) as an upgraded version of
Map(M,N).
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Goodwillie-Weiss embedding calculus

Let

confm−fr
M (r) = {(x1,F1, . . . , xr ,Fr) | xj ∈ M, xi , xj for i , j}

the space of configurations of r points on M, with an m-frame
Fj in the tangent space at xj .

Any embedding f : M → N induces maps
confm−fr

M (r)→ confm−fr
N (r).

Main idea: Study Emb(M,N) via

Emb(M,N)→ {Map(confm−fr
M (r), confm−fr

N (r))}r≥1.

Problem: ...still need coherences between the various r and
the points.
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Fulton-MacPherson operad and action

The framed Fulton-MacPherson–Axelrod-Singer operad FMfr
m

is a compactification

confm−fr
Rm → FMfr

m(r).

1

2

3

3

4
5

Gluing yields operations

FMfr
m(r) × FMfr

m(s)→ FMfr
m(r + s − 1)

that assemble into an operad structure. (FMfr
m is equivalent to

the framed little m-disks operad.)
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Fulton-MacPherson operad and action

Similarly one has a compactification

confm−fr
Rm → FMfr

M(r) = FMm−fr
M (r).

1

2

3

3

4
5

Gluing produces right actions

FMfr
M(r) × FMfr

m(s)→ FMfr
M(r + s − 1)

that assemble into a right operadic FMfr
m-module structure on

FMfr
M .
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Goodwillie-Weiss embedding calculus III

For an embedding f : M → N the induced map FMfr
M → FMm−fr

N is
compatible with the right FMfr

m-actions.

Theorem (Goodwillie, Weiss, Klein, Boavida)
The map

Emb(M,N)→ MapFMfr
m−mod(FMfr

M ,FMm−fr
N )

is a weak homotopy equivalence if dimN − dimM ≥ 3.

Here MapFMfr
m−mod(−) is the derived mapping space in the model

category of right operadic FMfr
m-modules.
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Our results

To state our results, we will slightly adjust the setting as follows:

Specialize to N = Rn.

M ⊂ Rm is the complement of a compact submanifold (with
boundary), i.e., open, extending to ∞. ⇒ incorporate mixed
dimensions by taking tubular neighborhood, and ”long”
objects.

Consider Emb∂(M,Rn) ⊂ Emb(M,Rn) be the embeddings that
agree with the given embedding outside a compact.

fixed outside compact
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Our results

Let Imm∂(M,Rn) be the immersions (supported on a
compact) and consider the homotopy fiber:

Emb∂(M,Rn) = hofiber(Emb∂(M,Rn)→ Imm∂(M,Rn))

Advantage 1: For M = Tube(M′) (tubular neighborhood),
Emb(M,Rn) = Emb(M′,Rn).

Advantage 2: Since M, Rn are framed, we can consider the
non-framed analogs FMM ⊂ FMfr

M ,FMn ⊂ FMfr
n .
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Our results II

Theorem (Fresse-Turchin-W., arxiv:2008.08146)

For M ⊂ Rm as above, n ≥ m + 3:

Emb∂(M,Rn)
'
−−→
(1)

MapFMm−bmod(FMM ,FMn)

'Q
−−→
(2)

MapΩ(FMm)−bmod(Ω(FMn),Ω(FMM))
'
−−→
(3)
|MC•(HGCĀ ,n)|,

with A a model for M ∪ {∞} and Ā ⊂ A the augmentation ideal.

(1) is due to Goodwillie, Weiss, Klein, Arone, Turchin

(2) is an operadic extension of Haefliger’s result (Fresse,
Mienné), and a rational weak equivalence componentwise,
finite-to-one on π0.

(3) is our main result and holds if n −m ≥ 2 ... with the
right-hand side to be defined...
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Hairy graph L∞-algebra HGCA ,n

For A a dgca, n an integer:

HGCA ,n = span {isom. classes of admissible A -decorated hairy graphs}

a1
,

a1

a2 a3 ,

a1 a2

,

a1

.

Vertices have degree −n, edges n − 1, aj ∈ A carry their
(homological, non-positive) degree.

Admissible: (i) Valence of vertices ≥ 3. (ii) No odd
symmetries.

Carries natural homotopy Lie- (L∞-)algebra structure.

Thomas Willwacher Embeddings of manifolds in Euclidean space and Feynman diagrams



L∞-algebra structure

Differential δ = dA + δsplit + δjoin,

δsplit Γ =
∑

v vertex

±Γ split v 7→
∑

δjoin
Γ

a1 a2 . . . ak

=
∑

S⊂hairs
|S |≥2

±
Γ

a1 . . .

∏
j∈S aj

.

Lie bracket:  Γ
,

Γ′
 =
∑ Γ Γ′

,

Higher L∞-operations [−, . . . ,−] are defined similarly.
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Interlude: dg Lie algebras and Maurer-Cartan spaces

Maurer-Cartan elements of L∞-algebra g

MC(g) =

{
x ∈ g0 | dx +

1
2

[x, x] +
1
3!

[x, x, x] + · · · = 0
}

Maurer-Cartan space (simplicial set)

MC•(g) = MC(g⊗̂Ωpoly(∆•))

For x ∈ MC(g) we can consider the twisted L∞-algebra with
operations

[a1, . . . , ar ]
x =
∑
k≥0

1
k !

[x, . . . , x︸   ︷︷   ︸
k×

, a1, . . . , ar ]
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Interlude: Two important results about MC spaces

Theorem (Berglund)

g: pro-nilpotent L∞-algebra, x ∈ MC(g). Then for k ≥ 1

πk (MC•(g), x) � Hk (gx),

where for k = 1 the rhs. is equipped with the PBW group structure.

Remark: Furthermore, in good cases that cohomology H(MC•(g)x)
is computed by the Chevalley complex of the truncation

H(MC•(g)x) � H(C(gxtrunc)).
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Consequences

Recall: Emb∂(M,Rn) 'Q |MC•(HGCĀ ,n)| for A a model for M ∪ {∗}.
Consequences:

For n ≥ m + 3, k ≥ 1 one can compute πQ
k Emb(M,Rn) in

terms of diagrams.

One has characterization of π0Emb(M,Rn) (invariants)
extending classical Vassiliev invariants, that are complete up
to finite ambiguity if n ≥ m + 3.
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Example I - long knots

M = Rm, then Emb∂(Rm,Rn) is the space of m-dimensional long
knots in Rn.

fixed outside compact

Then Rm ∪ {∞} � Sm.

We can take A = Q[ω] with ω of degree m, ω2 = 0.

Ā is one-dimensional, spanned by ω, hence all hairs carry
same decoration.
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Example I - long knots, ctd.

ω
,

ω

ω ω ,

ω ω

,

ω

.

All L∞-operations joining hairs are 0⇒ abelian L∞-algebra.

⇒ π0(MC•(HGCĀ ,n)) � H0(HGCĀ ,n).

In the case n = 3, m = 1 one recovers the diagrams
enumerating Vassiliev knot inveriants, i.e., uni-trivalent
diagrams modulo IHX.
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Example II - string links

M = Tube(Rm1 t Rm2 t · · · t Rmr ) ⊂ Rm (tubular neighborhod), then
Emb∂(M,Rn) is (essentially) the space of string links with k
components of dimensions m1, . . . ,mr . (see ”board”)

M ∪ {∞} � Sm1 ∨ · · · ∨ Smr wedge product of spheres.

A = Q[ω1, . . . , ωr ]/〈ωiωj = 0〉, and Ā = span(ω1, . . . , ωr).

HGCĀ ,n is given by hairy graphs with hairs of r ”colors”, and is
still abelian.

ωi

ωj ωk

Recovers results of Turchin-Tsopméné
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General remark

Let M′ ⊂ Rm be an m′-dimensional submanifold.

Then we can consider a tubular neighborhood
M = Tube(M′) ⊂ Rm, an open submanifold.

The embedding space Emb(M,Rn) is identified with the space
of framed embeddings of M′ in Rm.

However, Emb(M,Rn) � Emb(M′,Rn), that is, the homotopy
fiber ”eats” the framing.

⇒ our result applies to embeddings of general compact
submanifolds M′ ⊂ Rm, with the choice M = Tube(M′ t {∞}),
then Emb∂(M,Rn) � Emb(M′,Rn)
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MC elements and trees

Let m′ the cohomological dimension of M, i.e., the smallest
number such that Hk (M) = 0 for all k ≤ m′, and suppose
m′ ≤ n − 3.

Degree counting⇒ all elements of HGCH̄(M),n of non-positive
degree are trees.

Hence π0MC•(HGCH̄(M),n) is determined by tree diagrams.
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Example - Unknotting

Classical unknotting theorem:

Theorem (Whitney-Wu)

M′ compact k -connected of dimension m′, n ≥ 2m′ + 1, then
π0(Emb(M′,Rn)) = ∗.

We can ”see” this on graphs: In case n > 2m′ + 1 there are no
graphs of degree ≤ 0, hence we can conclude from our result that
π0(Emb(M′,Rn)) is finite.
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Example - Nonlinear MC equation

M′ = S2 × S2 ⊂ R5, n = 7.

A = Q[ω1, ω2]/〈ω2
1 = ω2

2 = 0〉, with |ω1| = |ω2| = 2.

List of (relevant) degree 0 graphs:

L1 = ω1 ω1 ∧ ω2 ; L2 = ω2 ω1 ∧ ω2 .

MC equation for x = λ1L1 + λ2L2:

0 =
1
2

[x, x] = λ1λ2
ω1 ∧ ω2 ω1 ∧ ω2 ω1 ∧ ω2

.

Thus

πo(MC•(HGCĀ ,n)) = {λ1L1 + λ2L2 | λ1 = 0 or λ2 = 0}.
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Example - with gauge transformations

We consider M′ = S1 × S2, n = 6.

A = H∗(S1 × S2) = Q[α, β]
/
〈β2 = 0〉, with |α| = 1, |β| = 2.

Relevant graphs:

Lα = α α ∧ β

Lβ = β α ∧ β Tα∧β =
α ∧ β α ∧ β α ∧ β

with Lα of degree 1, Lβ,Tα∧β of degree −1.

Any λLβ + µTα∧β is an MC element.

Gauge equivalence λLβ + µTα∧β ∼ λLβ if λ , 0. Hence

π0(MC•(HGCĀ ,n)) � {λLβ + µTα∧β | µ = 0 or λ = 0}.
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Future directions

Generalize Rn to N. Probably possible with similar techniques.
Expected result: Need to decorate vertices of graphs by
H(N), with more complicated L∞-structure.

Attack codimension restriction n −m ≥ 3, and target in
particular Diff(M) (n = m): Can likely be done using tricks
akin Weiss fiber sequence.
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The End

Thanks for listening!
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