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Manin’s conjecture

Let X be a smooth projective Fano variety (i.e. the anticanonical
bundle K−1

X is ample) defined over Q.

We can define the height of x ∈ X (Q) by choosing an embedding
i : X → PN

Q and setting hi (x) = max(|x0|, . . . , |xN |) when
i(x) = (x0 : · · · : xN) for x0, . . . , xn ∈ Z with no common factors.

Manin’s conjecture predicts that the number of x ∈ X (Q) of
height h(X ) < T has for form cT a(logT )b for a, b, c explicit
constants depending on the geometry and arithmetic of X .

Some versions also give predictions for the distribution of those x
in X (Qp) and X (R).

But for these predictions to come true, we must first remove a thin
set of rational points.



Thin sets and their discontents

A thin set of X (Q) is a finite union of subsets of X (Q) of the
following two types:

I Y (Q) for a subvariety Y ⊂ X of X .

I The image of Z (Q) for f : Z → X a generically finite map of
degree ≥ 2.

Using cutting-edge algebraic geometry tools, Lehmann, Sengupta,
and Tanimoto found a good thin set to remove.

But this is all very strange. To decide whether a rational point is
good or bad, you first have to go looking for bad subvarieties of
your variety, or bad coverings.

Is there a way to tell whether a rational point is good or bad by
looking at just that point?



Rational points and rational curves

There is a deep analogy between the fields Q and Fq(T ), Fq a
finite field.

Let X be a variety over Fq. The Fq(T )-points on X are analogous
to Q-points. We have analogues of height, Manin’s conjecture, etc.

But we also have a geometric structure. Why? A Fq(T )-point of
X gives a map P1

Fq
→ X . These are parameterized by a moduli

space Mor(P1,X ). Finite-type analogue: The moduli space
Morβ(P1,X ) of maps P1 → X of numerical class β.

(Can mod out Morβ(P1,X ) by PGL2 to get M0,0(X , β), but no
reason to do this here.)



The geometry of rational curves
We can interpret Manin’s conjecture in this setting as a statement
about the geometry of this moduli space Morβ(P1,X ).

We use results relating the geometry of a space to the number of
its Fq points.
I Lang-Weil: varieties of dimension N have ≈ qN Fq-points.
I (Harder: Lefschetz fixed point formula in étale cohomology.)

One consequence: Morβ(P1,X ) should have dimension n− (β ·Kx)
once we remove a thin set.

Why?
I For the best (anticanonical) height function, curves of class β

have height q−β·Kx .
I For the anticanonical height function, Manin predicts the

count should be proportional to the height, so proportional to
q−β·KX .

I Can check that the leading term in the constant of
proportionality is ≈ qn, so Morβ(P1,X ) should have
≈ qn−β·KX Fq-points.



Dimension and the tangent bundle

Manin’s conjecture predicts: Morβ(P1,X ) should have dimension
n − (β · Kx).

We can make the same prediction a different way!

Deformation theory: The tangent space to Morβ(P1,X ) at the
point corresponding to f : P1 → X is H0(P1, f ∗TX ).

Riemann-Roch:

dimH0(P1, f ∗TX ) = n − (β · Kx) + dimH1(P1, f ∗TX ).

Can deduce: Morβ(P1,X ) is smooth of dimension
n − (β · Kx) + dimH1(P1, f ∗TX ) at the point corresponding to f if
and only if H1(P1, f ∗TX ) = 0.



Freeness in the geometric setting

Rather than removing f : P1 → X lying in a thin set, which is hard
to compute explicitly in general, why not simply remove f where
H1(P1, f ∗TX ) 6= 0?

This ensures the dimension is what we want, and removes the
singularities.

Concretely: Vector bundles on P1 can be writen as
⊕n

i=1O(ai ) for
ai ∈ Z. We keep the f where f ∗TX has all ai ≥ −1.

This is slightly weaker than the concept of a “free curve”, meaning
all ai ≥ 0, or “very free curve”, meaning all ai ≥ 1. All important
concepts in algebraic geometry!



Freeness in an arithmetic setting

Let X be a smooth projective Fano variety over Q. Suppose we
can spread X out to a proper scheme X of dimension n over Z.

A rational point x ∈ X (Q) extends to a map fx : SpecZ→ X .

Then f ∗x TX is a vector bundle of rank n on SpecZ, i.e. a free
abelian group of rank n. Seemingly no invariants to work with...

If we fix in addition a Riemannian metric on X (R), then f ∗x TX is a
free abelian group of rank n with a symmetric bilinear form. A
lattice! These have interesting invariants...

The right ones for us are the successive minima.



Successive minima

We now define the successive minima of a lattice Λ.

Let λr be the least λ such that Λ contains r linearly independent
vectors of length ≤ λ. So λ1 is the length of the shortest nonzero
vector v1, λ2 is the length of the shortest vector v2 not a multiple
of v1, etc. We call λr the rth successive minimum.

The λ1, . . . , λn of a lattice behave like e−a1 , . . . , e−an of a vector
bundle, in particular if we order the ai so a1 ≥ · · · ≥ an.

Following Peyre, we say x is free if λn(f ∗x TX ) < H(x)−ε.

(This happens unless f ∗x TX admits a distance-decreasing map to a
relatively sparse lattice of rank 1, analogous to a curve free unless
f ∗TX admits a map to O(−2).)

Q (Peyre): Can removing the non-free rational points replace the
removal of the thin set in Manin’s conjecture?



Concrete characterization for projective varieties

Let X ⊆ PN be a smooth variety of dimension n defined by
homogeneous polynomials f1, . . . , fk . Let x ∈ X (Q) be an rational
point with projective coordinates (x0 : · · · : xN). Let

Λx = {y ∈ ZN+1/〈(x0, . . . , xn)〉 | y ·∇f1(x) = · · · = y ·∇fk(x) = 0}.

Here the norm of a vector y is the length of the projection of y to
the orthogonal complement of (x0, . . . , xn), equivalently is
min{||y + t(x0, . . . , xn)||2 | t ∈ R}.

We say x is free if

λn(Λx) < max(|x0|, . . . , |xN |)1−ε.



Positive example: The cubic surface case

Let X ⊆ P3 be defined by a cubic equation, for concreteness
x3

0 + x3
1 + x3

2 + x3
3 = 0.

The anticanonical line bundle on X is O(1), so the height is simply
max(|x0|, |x1|, |x2|, |x3|). Manin’s conjecture predicts the number of
points of height < T is proportional to T times a power of logT .

The thin set in this case consists of at most 27 lines on the cubic
surface X , for example (x0 : x1 : x2 : x3) = (a : −a : b : −b). The
number of points of height < T on a line is proportional to T 2,
much too big.

We want to check that removing unfree points can substitute for
removing the thin set. In particular, we need to check that almost
every point on the line is not free.



Positive example: The cubic surface case
Let X ⊆ P3 be defined by x3

0 + x3
1 + x3

2 + x3
3 = 0. Let

x = (a : −a : b : −b).

Then
Λx = {(y1, y2, y3, y4) ∈ Z4/x | a2(y1 + y2) + b2(y3 + y4) = 0.} The
sublattice defined by y1 + y2 = y3 + y4 = 0 contains only one
linearly independent vector (mod x). Outside this sublattice, we
must have y1 + y2 a multiple of b2 and y3 + y4 a multiple of a2, so
the minimum length is√

a4 + b4

2
≈ max(|a|, |b|)2 > max(|a|, |b|)1−ε.

So x is not free.

The generator of this sublattice is (c : −c : d : −d) where
ad − bc = 1, which has length

λ1 =

√
2

a2 + b2
≈ max(|a|, |b|)−1.



Positive example: Hypersurfaces (Browning-S)

Birch: Let X be a smooth hypersurface of degree d in PN . If
N ≥ 2d(d − 1), then the number of points in X (Q) of height < T
is proportional to a constant times TN+1−d . That is, Manin’s
conjecture is true, with empty thin set.

Browning-S: Let X be a smooth hypersurface of degree d in PN . If
N ≥ 3 · 2d−1(d − 1), then the number of free points in X (Q) of
height < T is proportional to the same constant times TN+1−d .

Method of proof: After Birch, suffices to upper bound the number
of unfree points. If x is unfree, then there are many y ∈ Λx with
||y || < ||x ||. So it suffices to upper bound the number of solutions
(x , y) to the system of equations f (x) = 0, y · ∇f = 0, which we
do with a circle method argument, following closely the strategy of
Birch.



Negative example: Hilbert schemes of projective space (S)

Let X = Hilb2(Pn). This is a resolution of the singularities of
Sym2(Pn). Abstractly, it is the moduli space of ideal sheaves on Pn

with quotient of length 2. Concretely, it is the quotient of the
blow-up Bl∆(Pn × Pn) of the diagonal ∆ of Pn × Pn by the
involution switching the two copies of Pn.

In Manin’s conjecture for Hilb2(Pn), the thin set is the image of
Bl∆(Pn × Pn)(Q).

Can removing unfree points substitute for removing this thin set?
No! In fact, most points in this thin set are free.

Geometric idea of the proof: A generic very free curve in Pn × Pn

will not intersect the diagonal. So its lift to Bl∆(Pn × Pn) will
remain equally free. The same will be true after we project to
Hilb2(Pn). So there are plenty of free curves on the thin set.



Negative example: Arithmetic proof

We show that a positive proportion of rational points on
Bl∆(Pn × Pn)(Q), outside the diagonal, map to free points on
Hilb2(Pn).

Starting point (Peyre): Most points in (Pn × Pn)(Q) are free.

We want to check that this property is preserved as we pullback
along the blow-up map Bl∆(Pn × Pn)→ Pn × Pn and pushforward
along the degree two covering Bl∆(Pn × Pn)→ Hilb2(Pn). Both
are generically finite maps.

General question: Let π : X → Y be a generically finite map of
smooth varieties. Let x ∈ X (Q) be a rational point of X , not in
the branch divisor. How can we compare f ∗x TX to f ∗π(x)TY ?



How do successive minima of the tangent lattice change
under generically finite maps?

We have a map of lattices f ∗x TX → f ∗π(x)TY , which because π is
differentiable can’t increase the length of vectors too much. The
successive minima can only change a lot if either

I the image of this map is a high-index sublattice of f ∗π(x)TY , or

I the length of vectors decreases a lot.

These phenomena can only happen if the determinant of the map
f ∗x TX → f ∗π(x)TY either

I vanishes mod p to a high power, for many p, or for large p, or

I is small as a real number.

Because the determinant of this map measures the discrepancy
between the anticanonical bundles of X and Y , and this
discrepancy is given by the branch divisor, these happen exactly
when x is either

I p-adically close to the branch divisor, or

I close in a real sense to the branch divisor.



Negative example: Arithmetic proof

We know that most points in (Pn × Pn)(Q) are free.

We know that they remain free as we pullback along
Bl∆(Pn × Pn)→ Pn × Pn and pushforward along
Bl∆(Pn × Pn)→ Hilb2(Pn), as long as they stay away from the
branch divisor in p-adic and real senses.

In both cases, the branch divisor is the exceptional divisor, i.e. the
inverse image of the diagonal in Pn × Pn.

We can check that a positive proportion rational points stay away
from the diagonal using a sieve.

So a positive proportion of rational points in the thin set are free.
This causes a failure of the modified Manin’s conjecture, at least in
its stronger equidistribution form.



Where does this leave freeness?

It is possible that unfree points do substitute for the special
subvarieties in Manin’s conjecture, but do not substitute for the
degree ≥ 2 covers.

Peyre has another proposal, the “all the heights” approach, which
should suffice to substitute for the degree ≥ 2 thin set.

It’s possible that combining the two gives a good alternative
formulation of Manin’s conjecture.


