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PART I. INTRODUCTION

First Scene:
An open place. Thunder and lightning.

Enter three witches.

Shakespeare. Macbeth, Act I.

This epigraph was introducing the reader to the Chapter I of the book

[Ma86] Yu. I. Manin. Cubic Forms. 2nd Edition, Amsterdam, North–
Holland, 1986,

where a problem was stated (Problem 11.11) , that was remaining unsolved
for more than 50 years.
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PART I. INTRODUCTION

First Scene:
An open place. Thunder and lightning.

Enter three witches.

Shakespeare. Macbeth, Act I.

This epigraph was introducing the reader to the Chapter I of the book

[Ma86] Yu. I. Manin. Cubic Forms. 2nd Edition, Amsterdam, North–
Holland, 1986,

where a problem was stated (Problem 11.11) , that was remaining unsolved
for more than 50 years.

The first part of this talk is dedicated to the recent breakthrough: the
solution of this problem by Dimitri Kanevsky. It is based on his article (as yet
unpublished)

[Ka21] Dimitri Kanevsky. An example of a non–associative Moufang loop of point
classes on a cubic surface. Preprint 2021.

The second part puts his constructions in a wider framework.

I will start with a brief presentation of basic definitions and problems.
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THREE WITCHES: COMMUTATIVE MOUFANG LOOPS

• DEFINITION 1. A symmetric quasigroup is a set E with binary composition law
◦ : E × E → E satisfying the following condition:

The triple relation L(x, y, z) : x ◦ y = z is S3–invariant.

• EXAMPLE 1. Consider an irreducible cubic curve in a projective plane
over a field k, and let E be the set of its non–singular points.

Then the triple relation L(x, y, z): (x, y, z) are collinear (taking in account mul-
tiplicities of intersections) defines on E a structure of symmetric quasigroup.

• (NON-)EXAMPLE 2. Consider now an irreducible cubic hypersurface
of dimension ≥ 2 in a projective space over k. One can try define the triple
collinearity relation in the same way as above, but then we will have to consider
some points in members of such a relation with infinite multiplicity .
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The following trick will allow us to (partially) extend the statement of Ex-
ample 1 in multidimension case.

• DEFINITION 2. A symmetric quasigroup E is called Abelian one, if for any
element u ∈ E the composition law xy := u ◦ (x ◦ y) turns E into an Abelian group.

• PROPOSITION 1. In the setup of (non-)Example 2, the collinearity relation
L(x, y, z) induces the structure of abelian quasigroup on any subset of E, consisting of
non–singular k–points of an irreducible intersection of the hypersurface with plane.

Generalising this remark, we will introduce our next Definition.

• DEFINITION 3. Let E be a symmetric quasigroup. It is called a CH–
quasigroup, if any three elements of E generate in it an Abelian subquasigroup.

(Of course, “CH” comes from “Cubic Hypersurface”)
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• THEOREM 0. Let (E, ◦) be a symmetric quasigroup. For any x ∈ E, denote by
tx : E → E the map E → E sending each y to x ◦ y. Then the following properties are
equivalent:

(i) (E, ◦) is an Abelian symmetric quasigroup.
(ii) The group T 0(E) with its natural left action upon E, generated by products of even

number of reflections tx is abelian.
(iii) For any x, y, z ∈ E, we have (txtytz)

2 = 1 (identical map E → E).
(iv) For any u ∈ E, the composition law xy := u ◦ (x ◦ y) defines on E the structure of

abelian group with identity u.
(v) The same as (iv) for some element u.

In [Ma86], the proof of this Theorem takes pages 12–13. It is organised as
a series of implications

(i) =⇒ (ii) =⇒ (iii) =⇒ (i)

and
(ii) =⇒ (iv) =⇒ (v) =⇒ (i).
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• SKETCH OF PROOF. (i) =⇒ (ii) : In this case x◦y = ux−1y−1, and txty(z) =

(x−1y)z in terms of an abelian group structure on E. Therefore product of any
even number of reflections is a group translation, and they commute.

(ii) =⇒ (iii) : Since T 0(E) is abelian, pairwise products of reflections com-
mute, hence

(txtytz)
2 = tzty(tztx)tytz = (tztx)tztytytz = 1.

(iii) =⇒ (i) : First of all, accepting (iii) one easily sees, that for any x, y, z ∈ E
we have

txtytz = ty◦(x◦z).

Now, again accepting (iii), consider the map E → T 0(E) : x 7→ x := tutx. Obvi-
ously, it is an embedding. To check that it is surjective, one checks that

txty = x ◦ (u ◦ y).

Finally, commutativity of T 0(E) from a combination of these identities.
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By that time, we established that (i), (ii), and (iii) are equivalent, so in place
of the implication (ii) =⇒ (iv), we may check the following two:

(iv) =⇒ (v) : obvious.

(v) =⇒ (i) : by assumption, xy := u ◦ (x ◦ y) is the composition law of an
Abelian group.

We have (xy)(x◦y) = u◦ [(u◦(x◦y))◦(x◦y)] = u◦u. This implies commutativity
of the quasigroup E via intermediate step x ◦ y = (u ◦ u)x−1y−1.

The last step of Proof follows from the remark, made during the check that
(i) =⇒ (ii).
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• DEFINITION 4. (i) A Commutative Moufang Loop (CML for brevity) is a set
E with commutative binary composition law ? : E×E → E : (x, y) 7→ x?y, having
identity u ∈ E and left inverse map E → E : x 7→ x−1, satisfying the following
additional identities (called “weak associativity” in “Cubic Forms”, Def. 1.4):

x ? (x ? y) = (x ? x) ? y, (x ? y) ? (x ? z) = (x ? x) ? (y ? z),

(x ? y) ? (x ? z) = ((x ? x) ? y) ? z.

A ?–product of n ≥ 1 copies of one element x ∈ E will be denoted simply xn,
because it does not depend on positions of brackets. Similarly, we denote by
xn the inverse element to x−n, if n < 0.

(ii) A CML E is called non–associative one, if there exists a triple of its
elements (x, y, z) such that x ? (y ? z) 6= (x ? y) ? z.

(iii) Associative centre Z(E) of a CML (E, ?) is the subset

Z(E) := {x ∈ E |x ? (y ? z) = (x ? y) ? z for all y, z ∈ E}.
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The associative centre of a CML E is an associative subloop (and therefore
an abelian group). The quotient loop of CML w.r.t. its centre is a CML of
exponent 3: for any x ∈ E/Z(E) we have x3 = 1.

Using modern language, one could say that, what we will be studying from
now on, are Symmetric Quasigroup Operad, Moufang Operad, and Algebras over them.

Computations, shown on several pages further on, actually prove some op-
eradic identities, expressed in terms of monomials in generic operadic algebras.
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FROM CH–QUASIGROUPS TO CMLs AND BACK

• THEOREM 1. Let (E, ◦, u) be a CH–quasigroup, endowed with some fixed element
u ∈ E. Then E with composition law (x, y) 7→ x ? y := u ◦ (x ◦ y) is CML with identity u.
For different choices of u, we get isomorphic CML’s.

• THEOREM 2. Let (E, ?, c) be a CML, endowed with some fixed element of its
associative center c ∈ Z(E). Then the composition law x ◦ y := cx−1 ? y−1 turns E into
CH–quasigroup, denoted Ec.

How these constructions can be extended from basic structures to mor-
phisms between them, is described in the following Theorem. We start with
two triples (E, ?, c) and (F, ?, d), as in Theorem 2.

The common notation ? for multiplication laws in two different CML’s should
not lead to a misunderstanding.
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• THEOREM 3. Let f : Ec → Fd be a morphism of quasigroups, as above, and 1
denotes the identity in Ec. Then d = f(c)f(1)2, and the map g = f(1)−1f : E → F is a
CML–morphism.

Conversely, let g : E → F be a morphism of two CMLs, and c ∈ E; d, b ∈ F are such
three elements that g(c) = db3. Then the map f := b−1g is a morphism of CH–quasigroups.

• SKETCH OF PROOF. If f : Ec → Ed is a morphism of quasigroups, then
f(cx−1 ? y−1) = df(x)−1 ? f(y)−1.

Substituting here x = y = 1, we get f(c) = df(1)−2. Similar substitutions show
that f(y)−1 = f(1)−2f(y−1), f(x)−1 = d−1f(1)f(cx−1), etc., and then, changing
variables and using the last “weak associativity” formula (Def. 4(i)), we come
to

g(xy) = f(1)−1f(xy) = f(1)−2(f(x)f(y)) = g(x)g(y).
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Conversely, consider a morphism of CMLs g : Ec → Fd, and an element b ∈ F ,
such that g(c) = db3.

We must check that f(cx−1y−1) = df(x)−1f(y)−1.

We have

f(cx−1y−1) = b−1g(cx−1y−1) = b−1((db3)(g(x)−1g(y)−1)).

Using the fact that d belongs to the centre of Fd, we deduce from here

f(cx−1y−1) = d(b2(g(x)−1g(y)−1)).

Now again, because of weak associativity (Def. 4),

df(x)−1f(y)−1 = d(bg(x)−1)(bg(y)−1) = d(b2(g(x)−1g(y)−1). �
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MOUFANG LOOPS FROM CUBIC HYPERSURFACES

• COLLINEARITY. Let k be a field, V a cubic hypersurface in Pr+1, r ≥ 2,
over k.

A family of three k–points P1, P2, P3 ∈ V (k) is called collinear one, if all points
lie on a projective line L ⊂ Pr+1 defined over k, and moreover, one of the
following conditions holds:

(a) P1 + P2 + P3 is the intersection cycle of V and L, with correct multiplicities;

or else

(b) L ⊂ V .

• ADMISSIBLE EQUIVALENCE RELATIONS. An equivalence relation A
on a Zariski dense subset V (k)0 ⊂ V (k) as above is called admissible one, if the
following condition is satisfied:

Let Pi and P ′i be two collinear families of points in V (k)0. If pairs (Pi, P
′
i ) for i = 1, 2

belong to the same equivalence classes modA, the same is true for (P3, P
′
3).
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One can check directly that if A is an admissible equivalence relation as
above, then the partial composition law P3 := P1 ◦ P2 induced by collinearity
defines on E := V (k)0/A the structure of a commutative symmetric quasigroup,
and therefore the composition law X ? Y := U ◦ (X ◦ Y ) induces the structure of
CML .

The following result refers to admissible equivalence relations upon some
subsets V (k)0 in the case, when geometry of V itself is “sufficiently general”.

The latter restriction means that not all points in V (k) are singular, and each line
L ⊂ Pr+1 defined over k intersects V at 2 or 3 different geometric points (not 1 or ∞.)

• THEOREM 3. If geometry of V is sufficiently general, then any admissible equiv-
alence relation on the set V (k)0 ⊂ V (k) of smooth k–points has equivalence classes dense
in Zariski topology, and the resulting CMLs with identity satisfy the relation X6 = 1 .
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NON–ASSOCIATIVE CML FROM A CUBIC SURFACE:

PRESENTATION OF AN EXAMPLE

• GROUND RING. It will be Z3[t]/(t2 + t+ 1): extension of the 3–adic com-
pletion of Z by a primitive cubic root of 1. We will put θ := tmod (t2 + t+ 1).

• CUBIC SURFACE. Our cubic surface V ⊂ P 3 over k := Q3(θ) will be given
by the equation in homogeneous coordinates T 3

0 + T 3
1 + T 3

2 + θT 3
3 = 0.

We will represent its k–points by equivalence classes of quadruples p = (t0 :
· · · : t3) ∈ Z3[θ]4 defined up to a common multiplication by invertible elements
of the ground ring.

• THEOREM 4. Define the equivalence relation A3 on the set V (k) by

(t0 : · · · : t3) ∼ (t′0ε : · · · : τ ′3ε),

where ε ≡ 1 mod (1 − θ)3. This equivalence relation is admissible one, and the respective
CML is non–associative.
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SKETCH OF PROOF OF THEOREM 4

• ADMISSIBILITY OF A3 . We must check that if P1, P2, P3 ∈ V (k) and
P ′1, P

′
2, P

′
3 ∈ V (k) are two collinear families, such that Pi ∼ P ′i modA3 for i = 1, 2,

then also P3 ∼ P ′3 modA3.

This was checked by direct computations in Sec. 6 of [Ka21]. The verification
was subdivided there into three cases:

1. P1 = P2 and P ′1 = P ′2.

2. P1 and P2 are different modulo 1− θ.
3. P1 ≡ P2 mod (1− θ).
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• NON–ASSOCIATIVITY OF COMPOSITION modA3. Consider the fol-
lowing family of three points in V (k), given by their homogeneous coordinates:

Q1 := (1 : 0 : −1 : 0), Q2 := (0 : 1 : −θ : 0),

and
Q0 := a lift of (1 : −1− 3θ : 1− θ : −1 + θ) mod (1− θ)3 to V (k).

Finally, put U0 := (1 : −1 : 0 : 0). According to Theorem 1 above, we may define
P ?Q := U0 ◦ (P ◦Q), if (U0, P ◦Q,P ?Q) are collinear, and in this triple there are
≤ 2 coinciding points.

Then we have

(Q0 ? Q1) ? Q2 6= Q0 ? (Q1 ? Q2) mod (1− θ)3.

This crucial statement was checked in Subsections 5.4.2 and 5.4.3 of [Ka21] by
direct computation of both sides. �
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• CONJECTURE ([Ka21]). The admissible equivalence relation A3 is universal in
the sense of [Ma86], pp. 43, 44, 54, 69.

Roughly speaking, this means that it is the finest equivalence relation in the
setup described above.
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• CONJECTURE ([Ka21]). The admissible equivalence relation A3 is universal in
the sense of [Ma86], pp. 43, 44, 54, 69.

Roughly speaking, this means that it is the finest equivalence relation in the
setup described above.

• FROM PART I to PART II.

The first Part of this talk was dedicated to the description and study of alge-
braic structures, induced upon sets of “typical” (e. g. non–singular) algebraic
points of varieties by various projective embeddings, or more generally, ample
line bundles.

In the second Part, we focus upon the fact that distribution of such points
might be highly nonhomogeneous, even if we consider only points on smooth
cubic surfaces: generally, there can much more such points on the set of lines
that on the remaining Zariski open subset.
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Part II. INTRODUCTION:

HEIGHTS AND DISTRIBUTION OF RATIONAL POINTS

• HEIGHTS. Let U, V be two quasiprojective varieties over a number field
K, [K : Q] <∞. We want to give a precise meaning to an intuitive feeling that
the set of K–points of U is considerably less than that of K–points of V , or is
approximately of the same size.

Start with the ground field K = Q and projective space Pn. If in addition we
choose and fix a projective coordinate system (x0 : x1 : · · · : xn) on this space,
we might start with estimating the number of points with max (|xi) ≤ H, when
H ∈ R tends to infinity. It is easy to see that this number grows approximately
as Hr+1, and so the bigger is the dimension of a projective space, the more
points it contains.

To be more precise in a more general environment, we must introduce ample
line bundles on our varieties, and respective generalisations of homogeneous
coordinates and heights.
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In order to define heights over general algebraic number fields, we need the
following preparations.

Let K be a number field, ΩK = ΩK,f tΩK,∞ the set of its places v represented
as the union of finite and infinite ones. Kv denotes the respective completion
of K.

For v ∈ ΩK,f , denote by Ov, resp. mv, the ring of integers of Kv, resp. its
maximal ideal. The Haar measure dxv on Kv is normalised in such a way that
the measure of Ov becomes 1. Moreover, for an archimedean v, the Haar
measure will be the usual Lebesgue measure, if v is real, and for complex v it
will be induced by Lebesgue measure on C, for which the unit square [0, 1]+[0, 1]i
has volume 2.
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Let the map |.|v : Kv → R∗≥0 be defined by the condition d(λx)v = |λ|vdxv.
Then for any λ ∈ K∗ we have the following product formula:

∏
v |λ|v = 1.

Now let Pn be a projective space over K with a chosen system of homoge-
neous coordinates as above, that is a basis of sections in Γ(PnK ,O(1). Then we
can define the exponential Weil height of a point p = (x0(p) : · · · : xn(p)) ∈ Pn(K) as

h(p) :=
∏
v∈ΩK

max{|x0(p)|v, . . . , |xn(p)|v}.

Because of the product formula, the height does not change, if we replace
coordinates (x0 : · · · : xn) by (λx0 : · · · : λxn), λ ∈ K.

However, it can change, if we change the coordinate system. If h′LV
is another

height, corresponding to a different choice of the basis of sections, then there
exist two positive real constants C,C ′ such that for all x,

ChLV
(x) ≤ h′LV

(x) ≤ C ′hLV
(x).



-XXI-

We must find ways to compare sizes of sets of points not too sensitive to
such coordinate changes.

We describe below our main constructions.

• HEIGHT ZETA FUNCTIONS. Let (U,LU ) be a pair consisting of a projec-
tive variety U over K and an ample line bundle LU on it. Then we can define
the height function hLv (p) on p ∈ U(K) using the same formula as above, but
this time interpreting (xi) as a basis of sections in Γ(U,LU ).

Now define the height zeta–function

Z(U,LU , s) :=
∑

x∈V (K)

hLU
(x)−s.
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• CONVERGENCE BOUNDARY. Denote by σ(U,LU ) ∈ R the lower limit
of positive reals σ for which Z(U,LU , s) absolutely converges if Re s ≥ σ.

We will call σ(U,LU ) the respective convergence boundary.

Clearly, it is finite (because this is so for projective spaces), and non–negative
whenever U(K) is infinite.

Intuitively, we may say that V contains “considerably less” K–points than
U , if

σ(V,LV ) < σ(U,LU ).

and “aproximately the same” amount of K–points, if

σ(V,LV ) = σ(U,LU ).
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• EXAMPLE: ACCUMULATING SUBVARIETIES. Let V be a Zariski
closed subvariety of U over K. If

card {x ∈ V (K) |hLV
(x) ≤ H} · card {x ∈ (V \ U)(K)} |hLV

(x) ≤ H}−1 → 0

as H →∞, then V is called an accumulating subvariety in U in the sense of

[BaMa90] V. Batyrev, Yu. Manin. Sur le nombre des points rationnels de hauteur
bornée des variétés algébriques. Math. Ann. 286 (1990), pp. 27–43.

[FrMaTsch89] J. Franke, Yu. Manin, Yu. Tschinkel. Rational points of bounded
height on Fano varieties. Invent. Math., 95, no. 2 (1989), pp. 421–435.

Clearly, then σ(V,LV ) = σ(U,LU ).

We will now describe a categorical setup appropriate for describing various
versions of accumulation and connecting combinatorics of accumulating subva-
rieties with spectra in the sense of homotopical algebra.
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RATIONAL POINTS, SIEVES, AND ASSEMBLERS

• SIEVES AND GROTHENDIECK TOPOLOGIES. Let C be a category. A
sieve in C is its full subcategory C′ such that if f : V → U is a morphism in C′,
and g : W → V is any morphism in C, then their composition f ◦ g : W → U is a
morphism in C′.

This notion is convenient in order to define a Grohendieck topology on C: it is
a collection of sieves J (U), one for each object U of C, satisfying three axioms:
see

[MaMar18] Yu. Manin, M. Marcolli. Homotopy types and geometries below
SpecZ. In: Dynamics: Topology and Numbers. Conference to the Memory of
Sergiy Kolyada. Contemp. Math., AMS 744 (2020). arXiv:math.CT/1806.10801.

for details and some additional notions. In particular, each object U of a cat-
egory with Grothendieck topology is endowed with covering families: collections
of morphisms {fi : Ui → U | i ∈ I} such that the full subcategory of C contain-
ing all morphisms in C factoring through fi belongs to the initial collection of
sieves.
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• ASSEMBLERS. An assembler is a small category C endowed with a Grothen-
dieck topology and initial object ∅. All morphisms in it must be monomorphisms,
and any two disjoint finite covering families must admit a common refinement
which is also a finite disjoint covering family.

Assemblers themselves form a category, in which a morphism is a functor
continuous with respect to their Grothenieck topologies, sending initial object
to initial object, and disjoint morphisms to disjoint morphisms.

In order to use assemblers related to the distribution of rational points, we
will first of all define formally certain sieves via point distribution.

For many more details, see

[Za17a] I. Zakharevich. The K–theory of assemblers. Adv. Math. 304 (2017),
pp. 1176–1218 .

[Za17b] I. Zakharevich. On K1 of an assembler. J. Pure Appl. Algebra 221,
no.7 (2017), pp. 1867–1898 .
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• CATEGORIES C(U,LU ). Let U be a projective variety over K and LU an
ample rank 1 vector bundle on U over K.

By definition, objects of C(U,LU ) are locally closed subvarieties V ⊂ U also
defined over K, and morphisms are the structure embeddings iV,U , or simply
iV : V → U . Here we did not mention L explicitly, but it is natural to endow
each V by LV := i∗V (LU ).

Structure embeddings are compatible with these additional data so that we
have in fact structure functors C(V,LV )→ C(U,LU ) which make of each C(V,LV )
a full subcategory of C(U,LU ) closed under precomposition, that is, a sieve .

We will call such categories C(U,LU ) geometrical sieves, and now introduce the
arithmetical sieves Car(U,LU ) in the following way.
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• LEMMA. The family of those morphisms iV,U as above, together with their sources
and targets, for which

0 < σ(V,LV ) < σ(U,LU ),

forms a sieve in C(U,LU ) denoted Car(U,LU ).

This statement is fairly obvious.

Notice, that if V (K) is a finite set, then σ(V,LV ) = 0, but the converse is not
true: σ(V,LV ) = 0 for any abelian variety V/K and for many other classes of
V . A complete geometric description of this class of varieties seemingly is not
known.

• ARITHMETIC ASSEMBLERS. Using sieves Car(U,LU ), we can easily in-
troduce the respective arithmetic assemblers CU : the relevant Grothendieck
topology is simply the Zariski topology over K, and ∅ is the empty scheme.
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ANTICANONICAL HEIGHTS AND POINTS COUNT

• ANTICANONICAL HEIGHTS: DIMENSION ONE. Let (U,LU ) be as
above a pair consisting of a variety and ample line bundle defined over K,
[K : Q] <∞. Choose a exponential height function hL, and set for B ∈ R+

N(U,LU , B) := card{x ∈ U(K) |hL(x) ≤ B}.

On page XXII, we based the definition of an arithmetical sieve upon an
intuitive idea that iV : V → U belongs to this sieve, if the number of K–points on
U is “considerably less” that such number on V . To make this idea precise, we used
convergence boundaries.

Below, we will use considerably more precise count of points in order to de-
fine subtler sieves on a more narrow class of varieties U , using counting functions
themselves N(U,LU , B) in place of convergence boundaries.

Start with one–dimensional U .
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If U is a smooth irreducible curve of genus g, with nonempty set U(K), we have
the following basic alternatives:

g = 0 : U = P1, LU = −KV , N(U,LU , B) ∼ cB.

g = 1 : U = an elliptic curve, with rank of P icard groupe r, N(U,LU .B) ∼ c(log B)r−1.

g > 0 : N(U,LU , B) = const, if B is big enough.

A survey of expected typical behaviours of multidimensional analogs can be
found in the Introduction to [FrMaTsch89].

Below, our attention will be focussed upon Fano varieties, that is, varieties
with ample anticanonical bundle ω−1

V , as a wide generalisation of the one–
dimensional case g = 0.
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• ANTICANONICAL HEIGHTS FOR FANO VARIETIES. The most pre-
cise conjectural asymptotic formula for Fano varieties (or Zariski open subsets
of them) with dense U(K) has the form

N(U, ω−1
U , B) ∼ cB(logB)t, t := rkPicU − 1.

It certainly is wrong for many subclasses of Fano varieties. On the other
hand, it is

(i) stable under the direct products;

(ii) compatible with predictions of Hardy–Littlewood for complete intersections;

(iii) true for quotients of semisimple algebraic groups modulo parabolic subgroups: see
[FrMaTsch89], Sections 1–2.
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HEIGHT COUNT WRT MORE GENERAL LINE BUNDLES LU

ON FANO VARIETIES: CONJECTURES.

In the paper

[BaMa90] V. Batyrev, Yu. Manin. Sur le nombre des points rationnels de hauteur
bornée des variétés algébriques. Math. Ann. 286 (1990), pp. 27–43.

it was suggested that only a slight generalisation of formula on page XXX
should be “typical” (although valid in a much more restricted set of cases):

N(U,LU , B) ∼ cBβ(logB)t, t := rkPicU − 1.

As was argued in [BaMa90], β should be defined by the relative positions of LU
and −KU in the cone of pseudo–effective divisors of U : see precise conjectures
there.

Sh. Tanimoto in the paper

[Ta19] Sh. Tanimoto. On upper boundaries of Manin type. arXiv:1812.03423v2,
29 pp.

provided arguments proving various inequalities for these numbers related
to the conjectures in [BaMa90].
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Finally, the subtlest information about such asymptotics is given by several
conjectures and proofs regarding exact value of the constant c.

• FROM ASYMPTOTIC FORMULAS TO SIEVES. If we restrict ourselves
by those V for which we can define a Grothendieck topology, objects of which satisfy
strong asymptotic formulas discussed above, or their weaker versions, then we can
try to define sieves in it by some inequalities weakening earlier ones, such as

N(V,LV , B)/N(U,LU , B) = o(1)

or even, for β(U,LU ) = β(V,LV ),

t(V,LV ) < t(U,LU ).

where t(V,LV ) and β(V,LV ) refer to formula on page XXXI.
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SIEVES “BEYOND HEIGHTS” ?

• THIN SETS AND TAMAGAWA MEASURES. Here we survey recent
attempts to define geometry of subsets of rational points of V (K) containing
“considerably less” points than V .

From our viewpoint, these definitions should also be tested on compatibility
with the philosophy of sieves and assemblers.

Below we adopt the framework of

[Sa20] W. Sawin. Freeness alone is insufficient for Manin–Peyre. arXiv:2001.06078.
7 pp.

in which K = Q.This paper starts with Conjecture 1.1 called “Modern for-
mulation of Manin’s conjecture”, and involves the following shifts from our
earlier setup based upon heights.

(i) Summation over points x of height ≤ B is replaced by the averaging of the
measures δx of the same points embedded into the adelic space V (AQ).
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(ii) Such an averaging means integration with respect to a certain measure.
The respective class of measures consists of the called Tamagawa measures τ .

Let V be a geometrically integral smooth projective Fano variety, r rank of
Picard group. Let V be its proper integral model over Z, and L(s, P ic VQ) and
the respective local zetas Lv are zetas of lattices.

Then
τ := (lims→1(s− 1)rL(s, P ic VQ))

∏
v

Lv(s, P ic VQ)−1ωv.

Here ωv is defined by the natural measure on local non–archimedean points of
V or archimedean volume form.
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(iii) Finally, define the numbers α(V ) and β(V ) by

α(V ) := r vol {y ∈ ((Pic(V )⊗R)eff )∨ |KV · y ≤ 1},

and
β(V ) := cardH1(Gal(Q/Q),PicVQ).

Then the modern formulation of the conjecture on the number of rational
points of bounded height on a Fano variety, according to [Sa20], can be stated
as follows.

Let f : U → V be a morphism of geometrically integral smooth projective
varieties. Call it a thin morphism, if the induced map U → f(U) is generically
finite of degree 6= 1.
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• CONJECTURE. There exists the complement W to the union of a finite family of
thin morphisms such that we have an exact formula for weak limit of the form

limB→∞
1

B(logB)r−1

∑
x∈W (Q)
H(x)<B

δx = α(V )β(V )τBr,

where τBr is the restriction of Tamagawa measure on the subset of V (AQ), on which the
Brauer–Manin obstruction vanishes.

Regarding Brauer–Manin obstruction, see the monograph and many refer-
ences therein.

[CThSk19] J.-L. Colliot-Thélene, A. Skorobogatov. The Brauer–Grothendieck
group. imperial.ac.uk 2019, 360 pp.

For a class of varieties for which this conjecture is valid, we obtain interesting
new possibilities for defining sieves.
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THANK YOU FOR YOUR ATTENTION !


