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Question (Katz)

Can one "hear” the shape of a space?

Spectral Information
—> | Geometr
(eigenvalues of the Laplace Operator)




O Weyl Law
(asymptotics of eigenvalues),

O Selberg Trace Formula
(Spectrum < closed geodesics),

O Quantum Unique Ergodicity
(curvature < 0 — asymptotics of eigenfunctions),



Does Geometry determine Arithmetic?

For an algebraic variety X over Q,

Geometry of X(C) = Distribution of X(Q) ‘




Birch-Swinnerton-Dyer Conjecture
Batyrev Manin ConJectures

[Andre—Oort Conjecture] / Peyre Conjecture

[ Hilbert 10t Problem

[Vojta Conjectu res]

[ Waldschmidt Density Conjecture ]

[ Bombieri-Lang Conjectures ]




Can one "count” the spectrum of a space?

Arithmetic Information Spectral Information
(Distribution of Q-solutions) (Authomorphic Reps)




Simple Example: Counting Lattice Points in R?

A - a lattice in R

Counting Problem: For domains Q1 C RY,

vol(Q7)
AN Q7| ~ vol Rd/T/\)
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Simple Example: Counting Lattice Points in R?

A - a lattice in R

Counting Problem: For domains Q1 C RY,

vol(Q7)
AN Q7| ~ vol Rd/T/\)

Spectral Problem: For the Laplace operator A = — 27:1 88—;,

Spec(A ~ LZ(R"'//\)> = {42 A|?: A e AL},

Here the connection is provided by classical Fourier Analysis.



Hyperbolic Surfaces
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Hyperbolic Surfaces

I — an arithmetic subgroup of SL>(R) (e.g. [ = SL2(Z)).

Counting Problem: For domains Q7 C SL(RR), estimate
IrNQr|~?

Spectral Problem:
For the Laplace operator A = —yz(éd—; + («%22). Describe

Spec(A ~ L2(N\H?)),
or more generally,

SLo(R) ~ L?(T\SLy(R)).



Ramanujan Conjecture

For z € H = {Im(z) > 0},

[eS) )
A(Z) _ 627riz H(l - e27rik2)24 — Z T(n)e27rinz.
k=1 n=1



Ramanujan Conjecture

For z € H = {Im(z) > 0},

00 o0
A(Z) — 627riz H(l o e27rik2)24 _ Z T(n)e27rinz.
k=1 n=1

Conjecture (Ramanujan)

7(n) = O(n*Y/?*)  with ¢ > 0.




Ramanujan Conjecture

For z € H = {Im(z) > 0},

00 o0
A(Z) — 627riz H(l o e27rik2)24 _ Z T(n)e27rinz.
k=1 n=1

Conjecture (Ramanujan)

7(n) = O(n*Y/?*)  with ¢ > 0.

A is holomorphic, with A(icc) = 0, and satisfing

A ("”b) = (cz+d)*A(z) for ( j_ Z ) € SLy(7)

cz+d

with k = 12. It is an example of a holomorphic cusp form.




Maass Forms

Let I = SL»(Z) (or a finite index subgroup of SL»(Z)).

A Maass form of weight k is functions f : H — C satifying:

o (=8) = (@) @ (25 ) er,

O an eigenfunction of Ay = —yz(aa—xzz + %) + iky &,

O a growth condition at infinity.




Hecke operators

Hecke Tree: for z € H and a prime p,

Sp(z) ={pz,(z+1i)/p: i=0,...,p—1}.
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Hecke operators

Hecke Tree: for z € H and a prime p,

Sp(z) ={pz,(z+1i)/p: i=0,...,p—1}.

Hecke Operators: for f : H — C,

TN =g 2 )
weSp(z)
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Ramanujan—Petersson Conjecture

Conjecture (Ramanujan—Petersson)

The Hecke operators T, have uniform "spectral gap”:

all eigenvalues X\ # 1 of T, on Maass forms satisfy

1/2

2
A< P
p+1



Ramanujan—Petersson Conjecture

Conjecture (Ramanujan—Petersson)

The Hecke operators T, have uniform "spectral gap”:

all eigenvalues X\ # 1 of T, on Maass forms satisfy

2 1/2
A<
p+1
The best known bound:
Deligne: Yes, for holomorphic forms

39

. 2pos .
Kim-Sarnak: |A| < ——, in general.
p+1



Laplace operator on hyperbolic surfaces

51+ S+ -+« 5, « - finite area hyperbolic surfaces
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A1(Sn) = "the least eigenvalue of the Laplace A (excluding 0)

A1(Sn) =7 as n — 0.



Laplace operator on hyperbolic surfaces

51+ S+ -+« 5, « - finite area hyperbolic surfaces

A1(Sn) = "the least eigenvalue of the Laplace A (excluding 0)

A1(Sn) =7 as n — 0.

3 examples when A\;(S,) — 0.



Selberg Conjecture

I, ={y €SLa(Z) : v =1mod n} — congruence lattices
S, = I',,\H2 — hyperbolic surfaces
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Selberg Conjecture

I, ={y €SLa(Z) : v =1mod n} — congruence lattices
S, = I',,\H2 — hyperbolic surfaces

Conjecture (Selberg)

M(Sp) >3 foralln.

The best known bound:

975

Kim- k: P
im-Sarna A > 2096



Spectral Gap

It turns out that both

Ramanujan—Petersson Conjecture and  Selberg Conjecture

are better to understand in terms

Spectral Gap Property

for group actions.
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Spectral Gap

Let 7 : G — U(H) be a unitary representation of a group G.

Def. An almost invariant vector is sequence of unit vectors v, with

|7(g)vn — Val|| = 0 as n — oo, uniformly on compact sets of G.
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Spectral Gap

Let 7 : G — U(H) be a unitary representation of a group G.

Def. An almost invariant vector is sequence of unit vectors v, with

|7 (g)vn — va|| = 0 as n — oo, uniformly on compact sets of G.
Def. 7 has Spectral Gap if 7 almost invariant vectors.

No Spectral Gap for Z-actions:
O Z ~ L?(7Z) has a.i. vectors,

O T:L3(R/Z) — L3(R/Z) : ¢(x) — d(x + a).
b, (x) = €™M (for suitable ny) gives a.i. vectors,

O Also for more general (non-atomic) actions T ~ L3(X) ...

15



Spectral Gap and Averaging Operators

Given a probability measure 3 on G, one defines the operator:
m(B):H—=H: v~ /Gﬂ(g)v dp(g)

We assume that the measure (3 is
absolutely continuous, symmetric, and supp(f3) generates G.
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Spectral Gap and Averaging Operators

Given a probability measure 3 on G, one defines the operator:
m(B):H—=H: v~ /Gﬂ(g)v dp(g)

We assume that the measure (3 is

absolutely continuous, symmetric, and supp(f3) generates G.
Then

7 has Spectral Gap <= ||7(B)] < 1‘

It turns out that

Selberg Conjecture and Ramanujan—Petersson Conjecture

are, in fact, about establishing

explicit bounds on the norms ||7(8)]|. y



Selberg Conjecture (equivalent formulation)

We consider the action of SLp(R) on the space X, = I',\SL2(R)
and the averaging operators 7, «(53;) : L3(Xy) — L3(X»):

/ #(xg) dg,
voI

where B, = {g € SLx(R) : ||g|| < r}.

Tn oo(ﬂr)
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Selberg Conjecture (equivalent formulation)

We consider the action of SLp(R) on the space X, = I',\SL2(R)
and the averaging operators 7, «(53;) : L3(Xy) — L3(X»):

Wnoo(ﬂr) VO| / (ng dg,

where B, = {g € SLx(R) : ||g|| < r}.

The operators 7y oo(Br) have uniform "spectral gap”:

7 m00(Be)| < Cpe vol(B,) "2 for all € > 0.



R.—P. Conjecture (equivalent formulation)

Let

Fnp={y€SLZ[1/p]): v=1Imodn}, (n,p)=1
Xnp = Tnp\(SL2(R) x SL2(Qp)).
We consider the action
SLa(Qp) ~ Xnp = Tnp\ (SL2(R) X SLZ(QP))
and the averaging operators 7, p(ﬁr) D L3(Xnp) = L3(Xnp):

Top(Br)B(x) = / o(xg) d.

voI
where B, = {g € SLx(Qp) : ||gllp < r}.
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R.—P. Conjecture (equivalent formulation)

Let
Fp = {7 € SLa(Z[L/p]) : 7= Imodn}, (n,p) =1
Xnp = F,Lp\(SLz(]R) x SLa(Qp)).
We consider the action
SL2(Qp) ™~ Xnp =T p\ (SL2(R) X SLZ(QP))

and the averaging operators 7, ,(53) : L3(Xnp) — L3(Xnp):

o800 = o [ o) de.

where B, = {g € SLo(Qp) : ||gllp < r}.

The operators 7, p(3,) have uniform "spectral gap”:

17np(B:)| < Copre vOI(B,) "2+ for all ¢ > 0. .



A generalization: Property (7)

G — a simply connected simple linear algebraic group over Q
(s = (1€ GLEHL/pL): 7 = Imod (np) =1
Xnp =Tnp\(G(R) x G(Qp))
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A generalization: Property (7)

G — a simply connected simple linear algebraic group over Q
(s = (1€ GLEHL/pL): 7 = Imod (np) =1
Xnp =Tnp\(G(R) x G(Qp))

Theorem (..., Kazhdan, ..., Buger-Sarnak, ..., Clozel)

The actions
Tneo : G(R) ~ L3(Xnp) and mnp: G(Qp) ~ L3(Xnp)

have uniform "spectral gap”:

3 uniform 6 > 0 such that

H']Tn,*(/gr)n < Cn,* VO/(Br)_(s

19



Exact norm growth § is not known

Typically, 6 < 1/2 (e.g., Saito—Kurakawa lifts for Sp,).
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Exact norm growth § is not known

Typically, 6 < 1/2 (e.g., Saito—Kurakawa lifts for Sp,).

Let L be a reductive algebraic subgroup of G over Q.
Theorem (G.—Nevo)

For sufficiently large r,

voly (L(Qp) N By)
vol(B,) i

sup 17np (Bl = Cp

20



Exact norm growth § is not known

Typically, 6 < 1/2 (e.g., Saito—Kurakawa lifts for Sp,).

Let L be a reductive algebraic subgroup of G over Q.
Theorem (G.—Nevo)

For sufficiently large r,

voly (L(Qp) N By)
vol(B,) '

S 17np (Bl = Cp

Example: For G = SLy with d > 3,

2
sup [[7,p(Br) || = Cp vol(Br) 4.
n

20



We discuss

O What spectral information tells us about rational points?

O What distributions of rational points tells about spectrum?

21



Spectrum = Arithmetic

Theorem (Franke-Manin-Tschinkel)
For the flag varieties X = G /P

[{x € X(Q) : He(x) < T} ~ (X, L) T2(5) (Jog T )P,
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Spectrum = Arithmetic

Theorem (Franke-Manin-Tschinkel)
For the flag varieties X = G /P

[{x € X(Q) : He(x) < T} ~ (X, L) T2(5) (Jog T )P,

Here one needs only continuous spectrum (due to Langlands).

Other homogeneous varieties . .. (cf. Batirev—Manin Conjecture)

Theorem (Takloo-Bighash—Tschinkel; G.—Maucourant—Oh)

For compactfications X of the group variety G,

HX € X(Q): He(x) < T}} ~ c(X, L) Ta(ﬁ)(/ogT)b(ﬁ)—l_
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Spectrum = Arithmetic

Theorem (Franke-Manin-Tschinkel)
For the flag varieties X = G /P

[{x € X(Q) : He(x) < T} ~ (X, L) T2(5) (Jog T )P,

Here one needs only continuous spectrum (due to Langlands).

Other homogeneous varieties . .. (cf. Batirev—Manin Conjecture)

Theorem (Takloo-Bighash—Tschinkel; G.—Maucourant—Oh)

For compactfications X of the group variety G,

HX € X(Q): He(x) < T}} ~ c(X, L) Ta(ﬁ)(/ogT)b(ﬁ)—l_

We further explore spacial distribution of rational points.
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Discrepancy of distribution

Let S(r) be locally finite subsets of real algebraic variety X.

S(r)'s is equidistributed w.r.t. a measure m on X if

1S(nn D]
' v(r)

for all "nice” compact domains D.

Jv(r) = oo — m(D)

We introduce the discrepancy:

_|Istynpl

D(S(). D) = | =S

23



X ={xeR?: Q(x) =1} - a rational ellipsoid

S(m) = {ﬁ C Q(2) = m,zGZd} #0
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X ={xeR?: Q(x) =1} - a rational ellipsoid

S(m) = {ﬁ C Q(2) = m,zGZd} #0

Pomerenke,... (for d > 4), Duke—Schulze-Pillot (d = 3):

D(S(m), D) <p |S(m)| .
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X ={xeR?: Q(x) =1} - a rational ellipsoid

S(m) = {ﬁ C Q(2) = m,zGZd} #0

Pomerenke,... (for d > 4), Duke—Schulze-Pillot (d = 3):

D(S(m), D) <p |S(m)|~*.
Schmidt, Beck: For any finite set R ¢ S91,
- 1/2 L.
</ D(R, B(x,1n)) dxdn) > |R|2 21,
0 Sd-1

24



Discrepancy for rational points

G — a simply connected simple algebraic group over Q (G = SL,)
Fnp={7v€ G(Z[1/p]) : v =1Imodn}, (n,p)=1
Snp(r) ={v€Tnp: [Vl <r}
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Theorem (Strong Approximation Property)
G(Qp) is not compact = T, , is dense in G(R).
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Discrepancy for rational points

G — a simply connected simple algebraic group over Q (G = SL,)
Fnp={7v€ G(Z[1/p]) : v =1Imodn}, (n,p)=1
Snp(r) ={v€Tnp: [Vl <r}

Theorem (Strong Approximation Property)
G(Qp) is not compact = T, , is dense in G(R).

For D C G(R), we set:

By(r) = {b e G(Qp) : [[bl| <r},
vp(r) = vol(B,),

25



Discrepancy for rational points

D — a "nice” compact domains in G(R)
Theorem (G.—Nevo)
For any e > 0 and a.e. g € G(R),

D(Sn,p(r)a Dg) <n,p,D,e Vp(r)76+€

(here § is the exponent in the norm estimate).
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Discrepancy for rational points

D — a "nice” compact domains in G(R)
Theorem (G.—Nevo)
For any e > 0 and a.e. g € G(R),

D(Sn,p(r)a Dg) <n,p,D,e Vp(r)76+€

(here § is the exponent in the norm estimate).

Theorem (G.—Nevo)
With d = dim(G),

D(Snp(r), D) €np,p vp(r)~2/(+2),
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D — a "nice” compact domains in G(R)
Theorem (G.—Nevo)
For any e > 0 and a.e. g € G(R),
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(here § is the exponent in the norm estimate).

Theorem (G.—Nevo)
With d = dim(G),

D(Snp(r), D) €np,p vp(r)~2/(+2),

Clozel-Oh-Ullmo: estimates using bounds on matrix coefficients
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Discrepancy for rational points

D — a "nice” compact domains in G(R)
Theorem (G.—Nevo)
For any e > 0 and a.e. g € G(R),

D(Sn,p(r)a Dg) <n,p,D,e Vp(r)76+€

(here § is the exponent in the norm estimate).

Theorem (G.—Nevo)
With d = dim(G),

D(Snp(r), D) €np,p vp(r)~2/(+2),

Clozel-Oh-Ullmo: estimates using bounds on matrix coefficients

Ghosh—G.—Nevo: different approach using averaging operators,
gives weaker estimate v, (r)~%/(d+1) 20



Converse Problem

We have:

Spectral Gap‘ = ‘ Estimates on Arithmetic Discrepancy | 7
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Converse Problem

We have:

’Spectral Gap‘ = ‘ Estimates on Arithmetic Discrepancy | 7

Question:

’ Estimates on Arithmetic Discrepancy‘ = ’Spectral Gap|?
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Sarnak—Xue approach to Selberg Conjecture

Theorem (Sarnak—Xue)

For congruence lattices ', in SL»(R), eigenvalues A # 0 of the
Laplacian on T ,\H satisfy \ > %.
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Sarnak—Xue approach to Selberg Conjecture

Theorem (Sarnak—Xue)

For congruence lattices ', in SL»(R), eigenvalues A # 0 of the
Laplacian on T ,\H satisfy \ > %.

Conjecture (Sarnak—Xue)
For B,={ge G: |g| <r}

vol(B,)+e

o I(B,)Y/? 0.
vol(G ) TVOlB)TE,e>

TN B <

28



Arithmetic approach to p-adic case

"Spectral Gap” for mnp 1 G(Qp) ~ L3(Tnp\(G(R) x G(Qp)) ?
We assume that G(R) is not compact.
Let B(x,n) denote balls in G(R) w.r.t. invariant metric.
We set:
Apn(x,m5 1) = D(Snp(r), B(x,n))
E(n, r) = ||Ap,n('v m r)HL2(G(]R)/G(Z))
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Arithmetic approach to p-adic case

"Spectral Gap” for mnp 1 G(Qp) ~ L3(Tnp\(G(R) x G(Qp)) ?
We assume that G(R) is not compact.
Let B(x,n) denote balls in G(R) w.r.t. invariant metric.
We set:
Dpn(x,m;r) = D(Spp(r), B(x,m))
E(n,r) =[[Bpn(,m: r)”Lz(G(R)/G(Z))

Theorem (G.—Nevo)

For any irreducible subrepresenation o of mp p,

lo (B <o ™ S E(n, r)

for n € (0,mp).
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Applications

Starting with the formula

lo (Bl <np ™ "™ E(n, r)

O Get explicit estimates on the discrepancy E(7, r) to get upper
operator norm bounds
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Applications

Starting with the formula

lo (Bl <np ™ "™ E(n, r)

O Get explicit estimates on the discrepancy E(7, r) to get upper
operator norm bounds

O Get explicit estimates on the norm ||o(5,)| to get lower
bounds on discrepancy
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Application |: Spectral Gap for forms of SL,

Let G be a form of SL, over Q.
(Eq., the group of norm one elements in a division algebra over Q)

Theorem (G.—Nevo)

When G(R) is non-compact, the representions

Tn,p - G(Qp) ~ L%(r”,P\(G(R) X G(QP)>

satisfy
[ Tnp(B) || < Capvol(By)™°

with explicit uniform § > 0.

Here 6 = 1/4 if G is anisotropic over Q and § = 1/16 in general.
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Application Il: lower bounds on discrepancy

Let G = SLy.
Theorem (G.—Nevo)
For all p € (0,m0) und r > ry,

HD(S”vP(f)’B(-,n)) P

Cn,pn 7dVP(r)

N

>
L2(G(R)/6G(2))

In comparison, the best upper bound (G.—Nevo) is

< G Ry (r) T,

H’D(Sn,p(r)aB(.777)) LQ(G(R)/G(Z)) - P

32
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