
Q-Points on Algebraic Groups
&

Spectrum

Alexander Gorodnik
(joint with Amos Nevo)

University of Zürich



Question (Katz)

Can one ”hear” the shape of a space?

Spectral Information

(eigenvalues of the Laplace Operator)
=⇒ Geometry
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# Weyl Law

(asymptotics of eigenvalues),

# Selberg Trace Formula

(Spectrum ↔ closed geodesics),

# Quantum Unique Ergodicity

(curvature < 0 → asymptotics of eigenfunctions),

# . . .
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Question

Does Geometry determine Arithmetic?

For an algebraic variety X over Q,

Geometry of X (C) =⇒ Distribution of X (Q)
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Question

Can one ”count” the spectrum of a space?

Arithmetic Information

(Distribution of Q-solutions)
=⇒ Spectral Information

(Authomorphic Reps)
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Simple Example: Counting Lattice Points in Rd

Λ – a lattice in Rd

Counting Problem: For domains ΩT ⊂ Rd ,

|Λ ∩ ΩT | ≈ vol(ΩT )

vol(Rd/Λ)

Spectral Problem: For the Laplace operator ∆ = −
∑d

i=1
∂2

∂x2
i

,

Spec
(

∆ y L2(Rd/Λ)
)

=
{

4π2‖λ‖2 : λ ∈ Λt
}
.

Here the connection is provided by classical Fourier Analysis.
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Hyperbolic Surfaces

Γ – an arithmetic subgroup of SL2(R) (e.g. Γ = SL2(Z)).

Counting Problem: For domains ΩT ⊂ SL2(R), estimate

|Γ ∩ ΩT | ≈?

Spectral Problem:

For the Laplace operator ∆ = −y2( ∂2

∂x2 + ∂2

∂y2 ). Describe

Spec
(

∆ y L2(Γ\H2)
)
,

or more generally,

SL2(R) y L2(Γ\SL2(R)).
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Ramanujan Conjecture

For z ∈ H = {Im(z) > 0},

∆(z) = e2πiz
∞∏
k=1

(1− e2πikz)24 =
∞∑
n=1

τ(n)e2πinz .

Conjecture (Ramanujan)

τ(n) = Oε(n
11/2+ε) with ε > 0.

∆ is holomorphic, with ∆(i∞) = 0, and satisfing

∆

(
az + b

cz + d

)
= (cz + d)k∆(z) for

(
a b

c d

)
∈ SL2(Z)

with k = 12. It is an example of a holomorphic cusp form.
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Maass Forms

Let Γ = SL2(Z) (or a finite index subgroup of SL2(Z)).

A Maass form of weight k is functions f : H→ C satifying:

# f
(
az+b
cz+d

)
=
(

cz+d
|cz+d |

)k
f (z) for

(
a b

c d

)
∈ Γ,

# an eigenfunction of ∆k = −y2( ∂2

∂x2 + ∂2

∂y2 ) + iky ∂
∂x ,

# a growth condition at infinity.
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Hecke operators

Hecke Tree: for z ∈ H and a prime p,

Sp(z) = {pz , (z + i)/p : i = 0, . . . , p − 1}.

Hecke Operators: for f : H→ C,

Tp(f )(z) =
1

p + 1

∑
w∈Sp(z)

f (w).

.
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Ramanujan–Petersson Conjecture

Conjecture (Ramanujan–Petersson)

The Hecke operators Tp have uniform ”spectral gap”:

all eigenvalues λ 6= 1 of Tp on Maass forms satisfy

|λ| ≤ 2p1/2

p + 1
.

The best known bound:

Deligne: Yes, for holomorphic forms

Kim-Sarnak: |λ| ≤ 2p
39
64

p + 1
, in general.
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Laplace operator on hyperbolic surfaces

S1 ← S2 ← · · · ← Sn ← · · · finite area hyperbolic surfaces

λ1(Sn) = ”the least eigenvalue of the Laplace ∆ (excluding 0)”.

Question

λ1(Sn)→? as n→∞.

∃ examples when λ1(Sn)→ 0.
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Selberg Conjecture

Γn = {γ ∈ SL2(Z) : γ = I mod n} – congruence lattices

Sn = Γn\H2 – hyperbolic surfaces

Conjecture (Selberg)

λ1(Sn) ≥ 1
4 for all n.

The best known bound:

Kim-Sarnak: λ1 ≥
975

4096
.
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Spectral Gap

It turns out that both

Ramanujan–Petersson Conjecture and Selberg Conjecture

are better to understand in terms

Spectral Gap Property

for group actions.
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Spectral Gap

Let π : G → U(H) be a unitary representation of a group G .

Def. An almost invariant vector is sequence of unit vectors vn with

‖π(g)vn − vn‖ → 0 as n→∞, uniformly on compact sets of G .

Def. π has Spectral Gap if @ almost invariant vectors.

No Spectral Gap for Z-actions:

# Z y L2(Z) has a.i. vectors,

# T : L2
0(R/Z)→ L2

0(R/Z) : φ(x) 7→ φ(x + α).

φnk (x) = e2πinkx (for suitable nk) gives a.i. vectors,

# Also for more general (non-atomic) actions T y L2
0(X ) . . .
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Spectral Gap and Averaging Operators

Given a probability measure β on G , one defines the operator:

π(β) : H → H : v 7→
∫
G
π(g)v dβ(g)

We assume that the measure β is

absolutely continuous, symmetric, and supp(β) generates G .

Then

π has Spectral Gap ⇐⇒ ‖π(β)‖ < 1

It turns out that

Selberg Conjecture and Ramanujan–Petersson Conjecture

are, in fact, about establishing

explicit bounds on the norms ‖π(β)‖.
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Selberg Conjecture (equivalent formulation)

We consider the action of SL2(R) on the space Xn = Γn\SL2(R)

and the averaging operators πn,∞(βr ) : L2
0(Xn)→ L2

0(Xn):

πn,∞(βr )φ(x) =
1

vol(Br )

∫
Br

φ(xg) dg ,

where Br = {g ∈ SL2(R) : ‖g‖ ≤ r}.

Conjecture

The operators πn,∞(βr ) have uniform ”spectral gap”:

‖πn,∞(βr )‖ ≤ Cn,ε vol(Br )−
1
2

+ε for all ε > 0.

17



Selberg Conjecture (equivalent formulation)

We consider the action of SL2(R) on the space Xn = Γn\SL2(R)

and the averaging operators πn,∞(βr ) : L2
0(Xn)→ L2

0(Xn):

πn,∞(βr )φ(x) =
1

vol(Br )

∫
Br

φ(xg) dg ,

where Br = {g ∈ SL2(R) : ‖g‖ ≤ r}.

Conjecture

The operators πn,∞(βr ) have uniform ”spectral gap”:

‖πn,∞(βr )‖ ≤ Cn,ε vol(Br )−
1
2

+ε for all ε > 0.

17



R.–P. Conjecture (equivalent formulation)

Let

Γn,p = {γ ∈ SL2(Z[1/p]) : γ = I mod n}, (n, p) = 1

Xn,p = Γn,p\
(
SL2(R)× SL2(Qp)

)
.

We consider the action

SL2(Qp) y Xn,p = Γn,p\
(
SL2(R)× SL2(Qp)

)
and the averaging operators πn,p(βr ) : L2

0(Xn,p)→ L2
0(Xn,p):

πn,p(βr )φ(x) =
1

vol(Br )

∫
Br

φ(xg) dg ,

where Br = {g ∈ SL2(Qp) : ‖g‖p ≤ r}.

Conjecture

The operators πn,p(βr ) have uniform ”spectral gap”:

‖πn,p(βr )‖ ≤ Cn,p,ε vol(Br )−
1
2

+ε for all ε > 0.
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A generalization: Property (τ)

G – a simply connected simple linear algebraic group over Q
Γn,p = {γ ∈ G (Z[1/p]) : γ = I mod n}, (n, p) = 1

Xn,p = Γn,p\
(
G (R)× G (Qp)

)

Theorem (. . . , Kazhdan, . . . , Buger–Sarnak, . . . , Clozel)

The actions

πn,∞ : G (R) y L2
0(Xn,p) and πn,p : G (Qp) y L2

0(Xn,p)

have uniform ”spectral gap”:

∃ uniform δ > 0 such that

‖πn,∗(βr )‖ ≤ Cn,∗ vol(Br )−δ.
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Exact norm growth δ is not known

Typically, δ � 1/2 (e.g., Saito–Kurakawa lifts for Sp2).

Let L be a reductive algebraic subgroup of G over Q.

Theorem (G.–Nevo)

For sufficiently large r ,

sup
n
‖πn,p(βr )‖ ≥ Cp

volL(L(Qp) ∩ Br )

vol(Br )
.

Example: For G = SLd with d ≥ 3,

sup
n
‖πn,p(βr )‖ ≥ Cp vol(Br )−

2
d .
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Questions

We discuss

# What spectral information tells us about rational points?

# What distributions of rational points tells about spectrum?

21



Spectrum =⇒ Arithmetic

Theorem (Franke–Manin-Tschinkel)

For the flag varieties X = G/P∣∣{x ∈ X (Q) : HL(x) ≤ T}
∣∣ ∼ c(X ,L)T a(L)(logT )b(L)−1.

Here one needs only continuous spectrum (due to Langlands).

Other homogeneous varieties . . . (cf. Batirev–Manin Conjecture)

Theorem (Takloo-Bighash–Tschinkel; G.–Maucourant–Oh)

For compactfications X of the group variety G ,∣∣{x ∈ X (Q) : HL(x) ≤ T}
∣∣ ∼ c(X ,L)T a(L)(logT )b(L)−1.

We further explore spacial distribution of rational points.
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Discrepancy of distribution

Let S(r) be locally finite subsets of real algebraic variety X .

S(r)’s is equidistributed w.r.t. a measure m on X if

∃v(r)→∞ :
|S(r) ∩ D|

v(r)
→ m(D)

for all ”nice” compact domains D.

We introduce the discrepancy:

D(S(r),D) =

∣∣∣∣ |S(r) ∩ D|
v(r)

−m(D)

∣∣∣∣ .
23



Example

X = {x ∈ Rd : Q(x) = 1} – a rational ellipsoid

S(m) =
{

z√
m

: Q(z) = m, z ∈ Zd
}
6= ∅

Pomerenke,. . . (for d ≥ 4), Duke–Schulze-Pillot (d = 3):

D(S(m),D)�D |S(m)|−δd .

Schmidt, Beck: For any finite set R ⊂ Sd−1,(∫ π

0

∫
Sd−1

D(R,B(x , η)) dxdη

)1/2

� |R|
1
2
− 1

2(d−1) .
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: Q(z) = m, z ∈ Zd
}
6= ∅

Pomerenke,. . . (for d ≥ 4), Duke–Schulze-Pillot (d = 3):

D(S(m),D)�D |S(m)|−δd .

Schmidt, Beck: For any finite set R ⊂ Sd−1,(∫ π

0

∫
Sd−1

D(R,B(x , η)) dxdη

)1/2

� |R|
1
2
− 1

2(d−1) .
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Discrepancy for rational points

G – a simply connected simple algebraic group over Q (G = SLn)

Γn,p = {γ ∈ G (Z[1/p]) : γ = I mod n}, (n, p) = 1

Sn,p(r) = {γ ∈ Γn,p : ‖γ‖p ≤ r}

Theorem (Strong Approximation Property)

G (Qp) is not compact ⇒ Γn,p is dense in G (R).

For D ⊂ G (R), we set:

Bp(r) = {b ∈ G (Qp) : ‖b‖ ≤ r},
vp(r) = vol(Br ),

D(Sn,p(r),D) =

∣∣∣∣ |Sn,p(r) ∩ D|
vp(r)

− vol(D)

|Γ1,p/Γn,p|

∣∣∣∣ .
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Discrepancy for rational points

D – a ”nice” compact domains in G (R)

Theorem (G.–Nevo)

For any ε > 0 and a.e. g ∈ G (R),

D(Sn,p(r),Dg)�n,p,D,ε vp(r)−δ+ε

(here δ is the exponent in the norm estimate).

Theorem (G.–Nevo)

With d = dim(G ),

D(Sn,p(r),D)�n,p,D vp(r)−2δ/(d+2).

Clozel–Oh–Ullmo: estimates using bounds on matrix coefficients

Ghosh–G.–Nevo: different approach using averaging operators,

gives weaker estimate vp(r)−δ/(d+1)
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Converse Problem

We have:

Spectral Gap ⇒ Estimates on Arithmetic Discrepancy ?

Question:

Estimates on Arithmetic Discrepancy ⇒ Spectral Gap ?
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Sarnak–Xue approach to Selberg Conjecture

Theorem (Sarnak–Xue)

For congruence lattices Γn in SL2(R), eigenvalues λ 6= 0 of the

Laplacian on Γn\H satisfy λ ≥ 5
36 .

Conjecture (Sarnak–Xue)

For Br = {g ∈ G : ‖g‖ ≤ r},

|Γn ∩ Br | �
vol(Br )1+ε

vol(G/Γn)
+ vol(Br )1/2, ε > 0.
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Arithmetic approach to p-adic case

”Spectral Gap” for πn,p : G (Qp) y L2
0

(
Γn,p\(G (R)× G (Qp)

)
?

We assume that G (R) is not compact.

Let B(x , η) denote balls in G (R) w.r.t. invariant metric.

We set:

∆p,n(x , η; r) = D
(
Sn,p(r),B(x , η)

)
E (η, r) = ‖∆p,n(·, η; r)‖L2(G(R)/G(Z))

Theorem (G.–Nevo)

For any irreducible subrepresenation σ of πn,p,

‖σ(βr )‖ �n,p η
− dim(G)E (η, r)

for η ∈ (0, η0).

29



Arithmetic approach to p-adic case

”Spectral Gap” for πn,p : G (Qp) y L2
0

(
Γn,p\(G (R)× G (Qp)

)
?

We assume that G (R) is not compact.

Let B(x , η) denote balls in G (R) w.r.t. invariant metric.

We set:

∆p,n(x , η; r) = D
(
Sn,p(r),B(x , η)

)
E (η, r) = ‖∆p,n(·, η; r)‖L2(G(R)/G(Z))

Theorem (G.–Nevo)

For any irreducible subrepresenation σ of πn,p,

‖σ(βr )‖ �n,p η
− dim(G)E (η, r)

for η ∈ (0, η0).

29



Applications

Starting with the formula

‖σ(βr )‖ �n,p η
− dim(G)E (η, r)

# Get explicit estimates on the discrepancy E (η, r) to get upper

operator norm bounds

# Get explicit estimates on the norm ‖σ(βr )‖ to get lower

bounds on discrepancy
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Application I: Spectral Gap for forms of SL2

Let G be a form of SL2 over Q.

(Eq., the group of norm one elements in a division algebra over Q)

Theorem (G.–Nevo)

When G (R) is non-compact, the representions

πn,p : G (Qp) y L2
0

(
Γn,p\(G (R)× G (Qp)

)
satisfy

‖πn,p(βr )‖ ≤ Cn,p vol(Br )−δ

with explicit uniform δ > 0.

Here δ = 1/4 if G is anisotropic over Q and δ = 1/16 in general.
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Application II: lower bounds on discrepancy

Let G = SLd .

Theorem (G.–Nevo)

For all η ∈ (0, η0) und r ≥ r0,∥∥∥D(Sn,p(r),B(·, η)
)∥∥∥

L2(G(R)/G(Z))
≥ Cn,p η

d2−dvp(r)−
1
2 .

In comparison, the best upper bound (G.–Nevo) is∥∥∥D(Sn,p(r),B(·, η)
)∥∥∥

L2(G(R)/G(Z))
≤ C ′n,p η

(d2−d)/2vp(r)
− 1

2(d−1) .
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