Q-Points on Algebraic Groups & Spectrum

Alexander Gorodnik (joint with Amos Nevo)

University of Zürich

Question (Katz)

Can one "hear" the shape of a space?

Spectral Information (eigenvalues of the Laplace Operator)

- Weyl Law (asymptotics of eigenvalues),
- Selberg Trace Formula (Spectrum ↔ closed geodesics),
- \bigcirc Quantum Unique Ergodicity (curvature $<0 \rightarrow$ asymptotics of eigenfunctions),

Ο ...

Question

Does Geometry determine Arithmetic?

For an algebraic variety X over \mathbb{Q} ,

Geometry of $X(\mathbb{C})$

$$\implies$$

Distribution of
$$X(\mathbb{Q})$$

Question

Can one "count" the spectrum of a space?

Arithmetic Information (Distribution of \mathbb{Q} -solutions)

Spectral Information (Authomorphic Reps)

Simple Example: Counting Lattice Points in \mathbb{R}^d

 Λ – a lattice in \mathbb{R}^d

Counting Problem: For domains $\Omega_T \subset \mathbb{R}^d$,

Simple Example: Counting Lattice Points in \mathbb{R}^d

 Λ – a lattice in \mathbb{R}^d

Counting Problem: For domains $\Omega_T \subset \mathbb{R}^d$,

Spectral Problem: For the Laplace operator $\Delta = -\sum_{i=1}^{d} \frac{\partial^2}{\partial x_i^2}$,

$$\operatorname{Spec}\left(\Delta \curvearrowright L^2(\mathbb{R}^d/\Lambda)\right) = \left\{4\pi^2 \|\lambda\|^2 : \lambda \in \Lambda^t\right\}.$$

Simple Example: Counting Lattice Points in \mathbb{R}^d

 Λ – a lattice in \mathbb{R}^d

Counting Problem: For domains $\Omega_T \subset \mathbb{R}^d$,

Spectral Problem: For the Laplace operator $\Delta = -\sum_{i=1}^{d} \frac{\partial^2}{\partial x_i^2}$,

$$\operatorname{Spec}\left(\Delta \curvearrowright L^2(\mathbb{R}^d/\Lambda)\right) = \left\{4\pi^2 \|\lambda\|^2 : \lambda \in \Lambda^t\right\}.$$

Here the connection is provided by classical Fourier Analysis.

Hyperbolic Surfaces

 Γ – an arithmetic subgroup of $SL_2(\mathbb{R})$ (e.g. $\Gamma = SL_2(\mathbb{Z})$).

Counting Problem: For domains $\Omega_T \subset SL_2(\mathbb{R})$, estimate

 $|\Gamma \cap \Omega_T| \approx ?$

Hyperbolic Surfaces

 Γ – an arithmetic subgroup of $SL_2(\mathbb{R})$ (e.g. $\Gamma = SL_2(\mathbb{Z})$).

 $\label{eq:Gounting Problem:} \frac{\mbox{Counting Problem:}}{|\Gamma\cap\Omega_{\mathcal{T}}|\approx?}$ For domains $\Omega_{\mathcal{T}}\subset\mbox{SL}_2(\mathbb{R}),$ estimate

Spectral Problem:

For the Laplace operator $\Delta = -y^2 (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2})$. Describe Spec $\left(\Delta \curvearrowright L^2(\Gamma \setminus \mathbb{H}^2)\right)$,

or more generally,

 $\mathsf{SL}_2(\mathbb{R}) \frown L^2(\Gamma \backslash \mathsf{SL}_2(\mathbb{R})).$

Ramanujan Conjecture

For $z \in \mathbb{H} = \{ \mathsf{Im}(z) > 0 \}$,

$$\Delta(z) = e^{2\pi i z} \prod_{k=1}^{\infty} (1 - e^{2\pi i k z})^{24} = \sum_{n=1}^{\infty} \tau(n) e^{2\pi i n z}.$$

Ramanujan Conjecture

For $z \in \mathbb{H} = \{ \operatorname{Im}(z) > 0 \}$,

$$\Delta(z) = e^{2\pi i z} \prod_{k=1}^{\infty} (1 - e^{2\pi i k z})^{24} = \sum_{n=1}^{\infty} \tau(n) e^{2\pi i n z}.$$

Conjecture (Ramanujan)

$$au(n) = O_{\epsilon}(n^{11/2+\epsilon}) \quad \textit{with } \epsilon > 0$$

Ramanujan Conjecture

For $z \in \mathbb{H} = \{ \operatorname{Im}(z) > 0 \}$,

$$\Delta(z) = e^{2\pi i z} \prod_{k=1}^{\infty} (1 - e^{2\pi i k z})^{24} = \sum_{n=1}^{\infty} \tau(n) e^{2\pi i n z}.$$

Conjecture (Ramanujan)

$$au({\it n}) = {\it O}_{\epsilon}({\it n}^{11/2+\epsilon}) \quad {\it with} \; \epsilon > 0.$$

 Δ is holomorphic, with $\Delta(i\infty) = 0$, and satisfing

$$\Delta\left(\frac{az+b}{cz+d}\right) = (cz+d)^k \Delta(z) \quad \text{for } \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in \mathsf{SL}_2(\mathbb{Z})$$

with k = 12. It is an example of a holomorphic cusp form.

Maass Forms

Let $\Gamma=\mathsf{SL}_2(\mathbb{Z})$ (or a finite index subgroup of $\mathsf{SL}_2(\mathbb{Z})).$

A *Maass form* of weight *k* is functions $f : \mathbb{H} \to \mathbb{C}$ satifying:

$$\bigcirc f\left(\frac{az+b}{cz+d}\right) = \left(\frac{cz+d}{|cz+d|}\right)^k f(z) \text{ for } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma,$$

○ an eigenfunction of $\Delta_k = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) + iky \frac{\partial}{\partial x}$,

 $\bigcirc\,$ a growth condition at infinity.

Hecke operators

Hecke Tree: for $z \in \mathbb{H}$ and a prime p,

$$S_p(z) = \{pz, (z+i)/p : i = 0, \dots, p-1\}.$$

Hecke operators

Hecke Tree: for $z \in \mathbb{H}$ and a prime p,

$$S_p(z) = \{pz, (z+i)/p : i = 0, \dots, p-1\}.$$

Hecke Operators: for $f : \mathbb{H} \to \mathbb{C}$,

$$T_p(f)(z) = \frac{1}{p+1} \sum_{w \in S_p(z)} f(w).$$

Ramanujan-Petersson Conjecture

Conjecture (Ramanujan–Petersson)

The Hecke operators T_p have <u>uniform</u> "spectral gap": all eigenvalues $\lambda \neq 1$ of T_p on Maass forms satisfy

$$|\lambda| \le \frac{2p^{1/2}}{p+1}.$$

Ramanujan-Petersson Conjecture

Conjecture (Ramanujan-Petersson)

The Hecke operators T_p have <u>uniform</u> "spectral gap": all eigenvalues $\lambda \neq 1$ of T_p on Maass forms satisfy

$$\lambda| \le \frac{2p^{1/2}}{p+1}.$$

The best known bound:

Deligne:Yes, for holomorphic formsKim-Sarnak:
$$|\lambda| \leq \frac{2p^{\frac{39}{64}}}{p+1}$$
, in general.

Laplace operator on hyperbolic surfaces

 $S_1 \leftarrow S_2 \leftarrow \cdots \leftarrow S_n \leftarrow \cdots$ finite area hyperbolic surfaces

Laplace operator on hyperbolic surfaces

 $S_1 \leftarrow S_2 \leftarrow \cdots \leftarrow S_n \leftarrow \cdots$ finite area hyperbolic surfaces

 $\lambda_1(S_n) =$ "the least eigenvalue of the Laplace Δ (excluding 0)".

Question

$$\lambda_1(S_n) \rightarrow ?$$
 as $n \rightarrow \infty$.

Laplace operator on hyperbolic surfaces

 $S_1 \leftarrow S_2 \leftarrow \cdots \leftarrow S_n \leftarrow \cdots$ finite area hyperbolic surfaces

$\lambda_1(S_n) =$ "the least eigenvalue of the Laplace Δ (excluding 0)".

Question

$$\lambda_1(S_n) \rightarrow ?$$
 as $n \rightarrow \infty$.

 \exists examples when $\lambda_1(S_n) \rightarrow 0$.

Selberg Conjecture

$$\Gamma_n = \{ \gamma \in \mathsf{SL}_2(\mathbb{Z}) : \gamma = I \mod n \} - \text{congruence lattices} \\ S_n = \Gamma_n \backslash \mathbb{H}^2 - \text{hyperbolic surfaces}$$

Selberg Conjecture

$$\begin{split} & \Gamma_n = \{\gamma \in \mathsf{SL}_2(\mathbb{Z}) : \ \gamma = I \ \text{mod} \ n\} - \text{congruence lattices} \\ & S_n = \Gamma_n \backslash \mathbb{H}^2 - \text{hyperbolic surfaces} \end{split}$$

Conjecture (Selberg)

$$\lambda_1(S_n) \geq \frac{1}{4}$$
 for all n .

Selberg Conjecture

$$\begin{split} & \Gamma_n = \{\gamma \in \mathsf{SL}_2(\mathbb{Z}) : \ \gamma = I \ \text{mod} \ n\} - \text{congruence lattices} \\ & S_n = \Gamma_n \backslash \mathbb{H}^2 - \text{hyperbolic surfaces} \end{split}$$

Conjecture (Selberg)

$$\lambda_1(S_n) \geq \frac{1}{4}$$
 for all n .

The best known bound:

Kim-Sarnak:
$$\lambda_1 \geq \frac{975}{4096}$$
.

It turns out that both

Ramanujan-Petersson Conjecture and Selberg Conjecture

are better to understand in terms

Spectral Gap Property

for group actions.

Let $\pi : G \to \mathcal{U}(H)$ be a unitary representation of a group G.

Def. An <u>almost invariant vector</u> is sequence of unit vectors v_n with

 $\|\pi(g)v_n - v_n\| \to 0$ as $n \to \infty$, uniformly on compact sets of *G*.

Let $\pi : G \to \mathcal{U}(H)$ be a unitary representation of a group G.

Def. An <u>almost invariant vector</u> is sequence of unit vectors v_n with

 $\|\pi(g)v_n - v_n\| \to 0$ as $n \to \infty$, uniformly on compact sets of *G*.

Def. π has *Spectral Gap* if \nexists almost invariant vectors.

Let $\pi : G \to \mathcal{U}(H)$ be a unitary representation of a group G.

Def. An <u>almost invariant vector</u> is sequence of unit vectors v_n with

 $\|\pi(g)v_n - v_n\| \to 0$ as $n \to \infty$, uniformly on compact sets of *G*.

Def. π has *Spectral Gap* if \nexists almost invariant vectors.

No Spectral Gap for \mathbb{Z} -actions: $\bigcirc \mathbb{Z} \curvearrowright L^2(\mathbb{Z})$ has a.i. vectors,

Let $\pi: G \to \mathcal{U}(H)$ be a unitary representation of a group G.

Def. An <u>almost invariant vector</u> is sequence of unit vectors v_n with

 $\|\pi(g)v_n - v_n\| \to 0$ as $n \to \infty$, uniformly on compact sets of *G*.

Def. π has *Spectral Gap* if \nexists almost invariant vectors.

No Spectral Gap for \mathbb{Z} -actions:

- $\bigcirc \mathbb{Z} \curvearrowright L^2(\mathbb{Z})$ has a.i. vectors,
- $\begin{array}{l} \bigcirc \ T: L_0^2(\mathbb{R}/\mathbb{Z}) \to L_0^2(\mathbb{R}/\mathbb{Z}) : \phi(x) \mapsto \phi(x+\alpha). \\ \phi_{n_k}(x) = e^{2\pi i n_k x} \ (\text{for suitable } n_k) \text{ gives a.i. vectors,} \end{array}$

Let $\pi : G \to \mathcal{U}(H)$ be a unitary representation of a group G.

Def. An <u>almost invariant vector</u> is sequence of unit vectors v_n with

 $\|\pi(g)v_n - v_n\| \to 0$ as $n \to \infty$, uniformly on compact sets of *G*.

Def. π has *Spectral Gap* if \nexists almost invariant vectors.

No Spectral Gap for \mathbb{Z} -actions:

- $\bigcirc \mathbb{Z} \curvearrowright L^2(\mathbb{Z})$ has a.i. vectors,
- $\bigcirc \ T: L^2_0(\mathbb{R}/\mathbb{Z}) \to L^2_0(\mathbb{R}/\mathbb{Z}): \phi(x) \mapsto \phi(x+\alpha).$ $\phi_{n_k}(x) = e^{2\pi i n_k x} \text{ (for suitable } n_k) \text{ gives a.i. vectors,}$

 \bigcirc Also for more general (non-atomic) actions $\mathcal{T} \curvearrowright L^2_0(X) \dots$

Spectral Gap and Averaging Operators

Given a probability measure β on G, one defines the operator:

$$\pi(\beta): H \to H: v \mapsto \int_G \pi(g) v \, d\beta(g)$$

We assume that the measure eta is

absolutely continuous, symmetric, and supp(β) generates G.

Spectral Gap and Averaging Operators

Given a probability measure β on G, one defines the operator:

$$\pi(\beta): H \to H: v \mapsto \int_G \pi(g) v \, d\beta(g)$$

We assume that the measure β is absolutely continuous, symmetric, and supp(β) generates G. Then

$$\pi$$
 has Spectral Gap $\iff \|\pi(eta)\| < 1$

Spectral Gap and Averaging Operators

Given a probability measure β on G, one defines the operator:

$$\pi(\beta): H \to H: v \mapsto \int_G \pi(g) v \, d\beta(g)$$

We assume that the measure β is absolutely continuous, symmetric, and supp(β) generates G. Then

$$\pi$$
 has Spectral Gap $\iff \|\pi(eta)\| < 1$

It turns out that

Selberg Conjecture and Ramanujan-Petersson Conjecture

are, in fact, about establishing

explicit bounds on the norms $\|\pi(\beta)\|$.

Selberg Conjecture (equivalent formulation)

We consider the action of $SL_2(\mathbb{R})$ on the space $X_n = \Gamma_n \setminus SL_2(\mathbb{R})$ and the averaging operators $\pi_{n,\infty}(\beta_r) : L_0^2(X_n) \to L_0^2(X_n)$:

$$\pi_{n,\infty}(\beta_r)\phi(x) = \frac{1}{\operatorname{vol}(B_r)}\int_{B_r}\phi(xg)\,dg,$$

where $B_r = \{g \in SL_2(\mathbb{R}) : \|g\| \le r\}.$

Selberg Conjecture (equivalent formulation)

We consider the action of $SL_2(\mathbb{R})$ on the space $X_n = \Gamma_n \setminus SL_2(\mathbb{R})$ and the averaging operators $\pi_{n,\infty}(\beta_r) : L_0^2(X_n) \to L_0^2(X_n)$:

$$\pi_{n,\infty}(\beta_r)\phi(x) = \frac{1}{\operatorname{vol}(B_r)}\int_{B_r}\phi(xg)\,dg,$$

where $B_r = \{g \in \mathsf{SL}_2(\mathbb{R}) : \|g\| \le r\}.$

Conjecture

The operators $\pi_{n,\infty}(\beta_r)$ have uniform "spectral gap":

$$\|\pi_{n,\infty}(\beta_r)\| \leq C_{n,\epsilon} \operatorname{vol}(B_r)^{-\frac{1}{2}+\epsilon}$$
 for all $\epsilon > 0$.
R.-P. Conjecture (equivalent formulation)

Let

$$\begin{split} &\Gamma_{n,p} = \{ \gamma \in \mathsf{SL}_2(\mathbb{Z}[1/p]) : \ \gamma = I \ \mathsf{mod} \ n \}, \quad (n,p) = 1 \\ &X_{n,p} = \Gamma_{n,p} \backslash \big(\mathsf{SL}_2(\mathbb{R}) \times \mathsf{SL}_2(\mathbb{Q}_p) \big). \end{split}$$

We consider the action

$$\mathsf{SL}_2(\mathbb{Q}_p) \curvearrowright X_{n,p} = \Gamma_{n,p} \setminus \big(\mathsf{SL}_2(\mathbb{R}) \times \mathsf{SL}_2(\mathbb{Q}_p)\big)$$

and the averaging operators $\pi_{n,p}(\beta_r): L^2_0(X_{n,p}) \to L^2_0(X_{n,p})$:

$$\pi_{n,p}(\beta_r)\phi(x) = \frac{1}{\operatorname{vol}(B_r)}\int_{B_r}\phi(xg)\,dg,$$

where $B_r = \{g \in \mathsf{SL}_2(\mathbb{Q}_p) : \|g\|_p \leq r\}.$

R.-P. Conjecture (equivalent formulation)

Let

$$\begin{split} &\Gamma_{n,p} = \{ \gamma \in \mathsf{SL}_2(\mathbb{Z}[1/p]) : \ \gamma = I \ \mathsf{mod} \ n \}, \quad (n,p) = 1 \\ &X_{n,p} = \Gamma_{n,p} \backslash \big(\mathsf{SL}_2(\mathbb{R}) \times \mathsf{SL}_2(\mathbb{Q}_p) \big). \end{split}$$

We consider the action

$$\mathsf{SL}_2(\mathbb{Q}_p) \curvearrowright X_{n,p} = \Gamma_{n,p} \setminus \big(\mathsf{SL}_2(\mathbb{R}) \times \mathsf{SL}_2(\mathbb{Q}_p)\big)$$

and the averaging operators $\pi_{n,p}(\beta_r): L^2_0(X_{n,p}) \to L^2_0(X_{n,p})$:

$$\pi_{n,p}(\beta_r)\phi(x) = \frac{1}{\operatorname{vol}(B_r)}\int_{B_r}\phi(xg)\,dg,$$

where $B_r = \{g \in \mathsf{SL}_2(\mathbb{Q}_p) : \|g\|_p \leq r\}.$

Conjecture

The operators $\pi_{n,p}(\beta_r)$ have <u>uniform</u> "spectral gap":

$$\|\pi_{n,p}(\beta_r)\| \leq C_{n,p,\epsilon} \operatorname{vol}(B_r)^{-\frac{1}{2}+\epsilon} \quad \text{for all } \epsilon > 0.$$

A generalization: Property (τ)

 $G - a \text{ simply connected simple linear algebraic group over } \mathbb{Q}$ $\Gamma_{n,p} = \{ \gamma \in G(\mathbb{Z}[1/p]) : \gamma = I \mod n \}, \quad (n,p) = 1$ $X_{n,p} = \Gamma_{n,p} \setminus (G(\mathbb{R}) \times G(\mathbb{Q}_p))$

A generalization: Property (τ)

 $G - a \text{ simply connected simple linear algebraic group over } \mathbb{Q}$ $\Gamma_{n,p} = \{ \gamma \in G(\mathbb{Z}[1/p]) : \gamma = I \mod n \}, \quad (n,p) = 1$ $X_{n,p} = \Gamma_{n,p} \setminus (G(\mathbb{R}) \times G(\mathbb{Q}_p))$

Theorem (..., Kazhdan, ..., Buger–Sarnak, ..., Clozel)

The actions

$$\pi_{n,\infty}: G(\mathbb{R}) \curvearrowright L^2_0(X_{n,p})$$
 and $\pi_{n,p}: G(\mathbb{Q}_p) \curvearrowright L^2_0(X_{n,p})$

have uniform "spectral gap":

 \exists uniform $\delta > 0$ such that

$$\|\pi_{n,*}(\beta_r)\| \leq C_{n,*} \operatorname{vol}(B_r)^{-\delta}.$$

Exact norm growth δ is not known

Typically, $\delta \ll 1/2$ (e.g., Saito–Kurakawa lifts for Sp₂).

Exact norm growth δ is not known

Typically, $\delta \ll 1/2$ (e.g., Saito–Kurakawa lifts for ${\rm Sp}_2).$

Let *L* be a reductive algebraic subgroup of *G* over \mathbb{Q} .

Theorem (G.–Nevo)

For sufficiently large r,

$$\sup_{n} \|\pi_{n,p}(\beta_r)\| \ge C_p \frac{\operatorname{vol}_L(L(\mathbb{Q}_p) \cap B_r)}{\operatorname{vol}(B_r)}$$

Exact norm growth δ is not known

Typically, $\delta \ll 1/2$ (e.g., Saito–Kurakawa lifts for Sp_2).

Let *L* be a reductive algebraic subgroup of *G* over \mathbb{Q} .

Theorem (G.–Nevo)

For sufficiently large r,

$$\sup_{n} \|\pi_{n,p}(\beta_{r})\| \geq C_{p} \frac{\operatorname{vol}_{L}(L(\mathbb{Q}_{p}) \cap B_{r})}{\operatorname{vol}(B_{r})}$$

Example: For $G = SL_d$ with $d \ge 3$,

$$\sup_{n} \|\pi_{n,p}(\beta_r)\| \geq C_p \operatorname{vol}(B_r)^{-\frac{2}{d}}.$$

We discuss

O What spectral information tells us about rational points?

O What distributions of rational points tells about spectrum?

Spectrum \implies Arithmetic

Theorem (Franke–Manin-Tschinkel)

For the flag varieties X = G/P

$$|\{x \in X(\mathbb{Q}) : \operatorname{H}_{\mathcal{L}}(x) \leq T\}| \sim c(X, \mathcal{L})T^{a(\mathcal{L})}(\log T)^{b(\mathcal{L})-1}$$

Theorem (Franke–Manin-Tschinkel)

For the flag varieties X = G/P

$$\left| \{ x \in X(\mathbb{Q}) : \operatorname{H}_{\mathcal{L}}(x) \leq T \} \right| \sim c(X, \mathcal{L}) T^{a(\mathcal{L})} (logT)^{b(\mathcal{L})-1}$$

Here one needs only continuous spectrum (due to Langlands).

Theorem (Franke–Manin-Tschinkel)

For the flag varieties X = G/P

$$\left| \{ x \in X(\mathbb{Q}) : \operatorname{H}_{\mathcal{L}}(x) \leq T \} \right| \sim c(X, \mathcal{L}) T^{a(\mathcal{L})} (logT)^{b(\mathcal{L})-1}$$

Here one needs only continuous spectrum (due to Langlands).

Theorem (Franke–Manin-Tschinkel)

For the flag varieties X = G/P

$$\left| \{ x \in X(\mathbb{Q}) : \operatorname{H}_{\mathcal{L}}(x) \leq T \} \right| \sim c(X, \mathcal{L}) T^{a(\mathcal{L})} (logT)^{b(\mathcal{L})-1}$$

Here one needs only continuous spectrum (due to Langlands).

Other homogeneous varieties ... (cf. Batirev-Manin Conjecture)

Theorem (Takloo-Bighash–Tschinkel; G.–Maucourant–Oh)

For compactfications X of the group variety G,

$$|\{x \in X(\mathbb{Q}) : \operatorname{H}_{\mathcal{L}}(x) \leq T\}| \sim c(X, \mathcal{L})T^{a(\mathcal{L})}(\log T)^{b(\mathcal{L})-1}$$

Theorem (Franke–Manin-Tschinkel)

For the flag varieties X = G/P

$$\left| \{ x \in X(\mathbb{Q}) : \operatorname{H}_{\mathcal{L}}(x) \leq T \} \right| \sim c(X, \mathcal{L}) T^{a(\mathcal{L})} (logT)^{b(\mathcal{L})-1}$$

Here one needs only continuous spectrum (due to Langlands).

Other homogeneous varieties ... (cf. Batirev-Manin Conjecture)

Theorem (Takloo-Bighash–Tschinkel; G.–Maucourant–Oh)

For compactfications X of the group variety G,

$$|\{x \in X(\mathbb{Q}) : \operatorname{H}_{\mathcal{L}}(x) \leq T\}| \sim c(X, \mathcal{L})T^{a(\mathcal{L})}(\log T)^{b(\mathcal{L})-1}$$

We further explore spacial distribution of rational points.

Let S(r) be locally finite subsets of real algebraic variety X.

S(r)'s is equidistributed w.r.t. a measure m on X if

$$\exists v(r) \to \infty: \frac{|S(r) \cap D|}{v(r)} \to m(D)$$

for all "nice" compact domains D.

We introduce the *discrepancy*:

$$\mathcal{D}(S(r),D) = \left| \frac{|S(r) \cap D|}{v(r)} - m(D) \right|.$$

Example

$$X=\{x\in \mathbb{R}^d:\; Q(x)=1\}$$
 – a rational ellipsoid

$$S(m) = \left\{ \frac{z}{\sqrt{m}} : Q(z) = m, z \in \mathbb{Z}^d \right\} \neq \emptyset$$

Example

$$X = \{x \in \mathbb{R}^d : Q(x) = 1\}$$
 – a rational ellipsoid

$$S(m) = \left\{ \frac{z}{\sqrt{m}} : Q(z) = m, z \in \mathbb{Z}^d \right\} \neq \emptyset$$

Pomerenke,... (for $d \ge 4$), **Duke–Schulze-Pillot** (d = 3): $\mathcal{D}(S(m), D) \ll_D |S(m)|^{-\delta_d}$.

24

Example

$$X = \{x \in \mathbb{R}^d : Q(x) = 1\}$$
 – a rational ellipsoid $S(m) = \left\{ rac{z}{\sqrt{m}} : Q(z) = m, z \in \mathbb{Z}^d
ight\}
eq \emptyset$

Pomerenke,... (for $d \ge 4$), **Duke–Schulze-Pillot** (d = 3): $\mathcal{D}(S(m), D) \ll_D |S(m)|^{-\delta_d}$.

Schmidt, Beck: For any finite set $R \subset S^{d-1}$,

$$\left(\int_0^{\pi}\int_{\mathcal{S}^{d-1}}\mathcal{D}(R,B(x,\eta))\,dxd\eta\right)^{1/2}\gg|R|^{\frac{1}{2}-\frac{1}{2(d-1)}}$$

 $G - a \text{ simply connected simple algebraic group over } \mathbb{Q} (G = SL_n)$ $\Gamma_{n,p} = \{ \gamma \in G(\mathbb{Z}[1/p]) : \gamma = I \mod n \}, \quad (n,p) = 1$ $S_{n,p}(r) = \{ \gamma \in \Gamma_{n,p} : \|\gamma\|_p \le r \}$

 $G - a \text{ simply connected simple algebraic group over } \mathbb{Q} (G = SL_n)$ $\Gamma_{n,p} = \{ \gamma \in G(\mathbb{Z}[1/p]) : \gamma = I \mod n \}, \quad (n,p) = 1$ $S_{n,p}(r) = \{ \gamma \in \Gamma_{n,p} : \|\gamma\|_p \le r \}$

Theorem (Strong Approximation Property)

 $G(\mathbb{Q}_p)$ is not compact $\Rightarrow \Gamma_{n,p}$ is dense in $G(\mathbb{R})$.

 $G - a \text{ simply connected simple algebraic group over } \mathbb{Q} (G = SL_n)$ $\Gamma_{n,p} = \{ \gamma \in G(\mathbb{Z}[1/p]) : \gamma = I \mod n \}, \quad (n,p) = 1$ $S_{n,p}(r) = \{ \gamma \in \Gamma_{n,p} : \|\gamma\|_p \le r \}$

Theorem (Strong Approximation Property)

 $G(\mathbb{Q}_p)$ is not compact $\Rightarrow \Gamma_{n,p}$ is dense in $G(\mathbb{R})$.

For $D \subset G(\mathbb{R})$, we set:

$$B_p(r) = \{b \in G(\mathbb{Q}_p) : ||b|| \le r\},\$$

$$v_p(r) = vol(B_r),\$$

$$\mathcal{D}(S_{n,p}(r), D) = \left|\frac{|S_{n,p}(r) \cap D|}{v_p(r)} - \frac{vol(D)}{|\Gamma_{1,p}/\Gamma_{n,p}|}\right|.$$

$$D$$
 – a "nice" compact domains in $G(\mathbb{R})$

Theorem (G.–Nevo)

For any $\varepsilon > 0$ and a.e. $g \in G(\mathbb{R})$,

$$\mathcal{D}(S_{n,p}(r), Dg) \ll_{n,p,D,\varepsilon} v_p(r)^{-\delta+\varepsilon}$$

(here δ is the exponent in the norm estimate).

$$D$$
 – a "nice" compact domains in $G(\mathbb{R})$

Theorem (G.–Nevo)

For any $\varepsilon > 0$ and a.e. $g \in G(\mathbb{R})$,

$$\mathcal{D}(S_{n,p}(r), Dg) \ll_{n,p,D,\varepsilon} v_p(r)^{-\delta+\varepsilon}$$

(here δ is the exponent in the norm estimate).

Theorem (G.–Nevo)

With $d = \dim(G)$,

$$\mathcal{D}(S_{n,p}(r),D) \ll_{n,p,D} v_p(r)^{-2\delta/(d+2)}$$

$$D$$
 – a "nice" compact domains in $G(\mathbb{R})$

Theorem (G.–Nevo)

For any $\varepsilon > 0$ and a.e. $g \in G(\mathbb{R})$,

$$\mathcal{D}(S_{n,p}(r), Dg) \ll_{n,p,D,\varepsilon} v_p(r)^{-\delta+\varepsilon}$$

(here δ is the exponent in the norm estimate).

Theorem (G.–Nevo)

With $d = \dim(G)$,

$$\mathcal{D}(S_{n,p}(r),D) \ll_{n,p,D} v_p(r)^{-2\delta/(d+2)}$$

Clozel-Oh-Ullmo: estimates using bounds on matrix coefficients

$$D$$
 – a "nice" compact domains in $G(\mathbb{R})$

Theorem (G.–Nevo)

For any $\varepsilon > 0$ and a.e. $g \in G(\mathbb{R})$,

$$\mathcal{D}(S_{n,p}(r), Dg) \ll_{n,p,D,\varepsilon} v_p(r)^{-\delta+\varepsilon}$$

(here δ is the exponent in the norm estimate).

Theorem (G.–Nevo)

With $d = \dim(G)$,

$$\mathcal{D}(S_{n,p}(r),D) \ll_{n,p,D} v_p(r)^{-2\delta/(d+2)}$$

Clozel–Oh–Ullmo: estimates using bounds on matrix coefficients **Ghosh–G.–Nevo:** different approach using averaging operators, gives weaker estimate $v_p(r)^{-\delta/(d+1)}$ We have:

We have:

Question:

Estimates on Arithmetic Discrepancy \Rightarrow Spectral Gap ?

Sarnak-Xue approach to Selberg Conjecture

Theorem (Sarnak–Xue)

For congruence lattices Γ_n in $SL_2(\mathbb{R})$, eigenvalues $\lambda \neq 0$ of the Laplacian on $\Gamma_n \setminus \mathbb{H}$ satisfy $\lambda \geq \frac{5}{36}$.

Sarnak-Xue approach to Selberg Conjecture

Theorem (Sarnak–Xue)

For congruence lattices Γ_n in $SL_2(\mathbb{R})$, eigenvalues $\lambda \neq 0$ of the Laplacian on $\Gamma_n \setminus \mathbb{H}$ satisfy $\lambda \geq \frac{5}{36}$.

Conjecture (Sarnak–Xue)

For
$$B_r = \{g \in G : \|g\| \leq r\}$$
,

$$|\Gamma_n \cap B_r| \ll \frac{\operatorname{vol}(B_r)^{1+\epsilon}}{\operatorname{vol}(G/\Gamma_n)} + \operatorname{vol}(B_r)^{1/2}, \quad \epsilon > 0.$$

Arithmetic approach to *p*-adic case

"Spectral Gap" for $\pi_{n,p}$: $G(\mathbb{Q}_p) \curvearrowright L^2_0(\Gamma_{n,p} \setminus (G(\mathbb{R}) \times G(\mathbb{Q}_p))$?

We assume that $G(\mathbb{R})$ is not compact.

Let $B(x, \eta)$ denote balls in $G(\mathbb{R})$ w.r.t. invariant metric. We set:

$$\Delta_{p,n}(x,\eta;r) = \mathcal{D}(S_{n,p}(r), B(x,\eta))$$
$$E(\eta,r) = \|\Delta_{p,n}(\cdot,\eta;r)\|_{L^2(G(\mathbb{R})/G(\mathbb{Z}))}$$

Arithmetic approach to p-adic case

"Spectral Gap" for $\pi_{n,p}: G(\mathbb{Q}_p) \curvearrowright L^2_0(\Gamma_{n,p} \setminus (G(\mathbb{R}) \times G(\mathbb{Q}_p))$?

We assume that $G(\mathbb{R})$ is not compact.

Let $B(x,\eta)$ denote balls in $G(\mathbb{R})$ w.r.t. invariant metric.

We set:

$$\Delta_{p,n}(x,\eta;r) = \mathcal{D}(S_{n,p}(r), B(x,\eta))$$
$$E(\eta,r) = \|\Delta_{p,n}(\cdot,\eta;r)\|_{L^2(G(\mathbb{R})/G(\mathbb{Z}))}$$

Theorem (G.–Nevo)

For any irreducible subrepresenation σ of $\pi_{n,p}$,

$$\|\sigma(\beta_r)\| \ll_{n,p} \eta^{-\dim(G)} E(\eta,r)$$

for $\eta \in (0, \eta_0)$.

Starting with the formula

$$\|\sigma(\beta_r)\| \ll_{n,p} \eta^{-\dim(G)} E(\eta,r)$$

• Get explicit estimates on the discrepancy $E(\eta, r)$ to get upper operator norm bounds

Starting with the formula

$$\|\sigma(\beta_r)\| \ll_{n,p} \eta^{-\dim(G)} E(\eta,r)$$

○ Get explicit estimates on the discrepancy $E(\eta, r)$ to get upper operator norm bounds

• Get explicit estimates on the norm $\|\sigma(\beta_r)\|$ to get lower bounds on discrepancy

Application I: Spectral Gap for forms of SL₂

Let G be a form of SL_2 over \mathbb{Q} .

(Eq., the group of norm one elements in a division algebra over \mathbb{Q})

Theorem (G.–Nevo)

When $G(\mathbb{R})$ is non-compact, the representions

$$\pi_{n,p}: G(\mathbb{Q}_p) \curvearrowright L^2_0\big(\mathsf{\Gamma}_{n,p} \backslash (G(\mathbb{R}) \times G(\mathbb{Q}_p) \big)$$

satisfy

$$\|\pi_{n,p}(\beta_r)\| \leq C_{n,p} \operatorname{vol}(B_r)^{-\delta}$$

with explicit uniform $\delta > 0$.

Here $\delta = 1/4$ if G is anisotropic over \mathbb{Q} and $\delta = 1/16$ in general.

Application II: lower bounds on discrepancy

Let $G = SL_d$.

Theorem (G.–Nevo)

For all $\eta \in (0, \eta_0)$ und $r \ge r_0$,

$$\left\|\mathcal{D}(S_{n,p}(r),B(\cdot,\eta))\right\|_{L^2(\mathcal{G}(\mathbb{R})/\mathcal{G}(\mathbb{Z}))} \geq C_{n,p}\,\eta^{d^2-d}\,v_p(r)^{-\frac{1}{2}}$$

In comparison, the best upper bound (G.-Nevo) is

$$\left\| \mathcal{D}(S_{n,p}(r), B(\cdot, \eta)) \right\|_{L^2(G(\mathbb{R})/G(\mathbb{Z}))} \leq C'_{n,p} \eta^{(d^2-d)/2} v_p(r)^{-\frac{1}{2(d-1)}}.$$
