4D/2D duality and representation theory

Tomoyuki Arakawa (RIMS, KYOTO)

Algebra, Geometry and Physics seminar (MPIM Bonn/HU Berlin) November 23, 2021

physical theories

3D N=4 gauge theory

invariants
(observables)

relation/duality

math. objects

Higgs branch (geometrical obj.)

math. objects

Coulomb branch (geometrical obj.)

Remark

At the moment there is no rigorous mathematical definition of quantum field theories in dimension higher than 2.

relation/duality

math. objects

Higgs branch (geometrical obj.) symplectic duality [Braden-Licata-Proudfoot-Webster]

math. objects

Coulomb branch (geometrical obj.)

physical theories

4D N=2 SCFT

invariants
(observables)

math. objects

Higgs branch (geometrical obj.)

math. objects

Schur index (numerical obj.)

4D theory obtained from type III $T_{III} =$ elliptic fibration via F-theory

Schur $(T_{III}) = q^{1/4}(1 + 3q + 9q^2 + 19q^3 + 60q^4 + ...)$ $= \eta(q^3)^3 / \eta(q)^3$,

where $\eta(q) = q^{1/24} \prod (1 - q^j).$ j > 1

Higgs $(T_{III}) = \{(x, y, z) \in \mathbb{C}^3 \mid x^2 + yx = 0\} = : \mathcal{N}$

Higgs branch \mathcal{N}

$$\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C}) = \{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Mat}_{2 \times 2}(\mathbb{C}) \mid \operatorname{tr}(A) = a + d = 0 \}$$

Lie algebra by [A, B] = AB - BA, $\mathcal{N} \cong \{A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in \mathfrak{g} \mid \det(A) = -(a)$ $= \{A \in \mathfrak{g} \mid A^2 = 0\}, \text{ the nullcone of } \mathfrak{g}.$

$$\dim \mathfrak{g} = 4 - 1 = 3$$

$$a^2 + bc) = 0\} \subset \mathfrak{g}$$

important object in representation theory

How about the Schur index
$$q^{1/4}(1+3d)$$

dim \mathfrak{g}
 $V(\mathfrak{g}) = S(\mathfrak{g} \otimes t^{-1}\mathbb{C}[t^{-1}])$ symmetric algebra
 $= \operatorname{span}_{\mathbb{C}}\{(\underline{x_1 \otimes t^{-n_1}}) \dots (\underline{x_r \otimes t^{-n_r}}) \mid x_{degree} = n_1 + \dots + n_r$
 $= \bigoplus_{d \ge 0} V(\mathfrak{g})_d, \quad \dim V(\mathfrak{g})_d < \infty.$
 $\operatorname{ch} V(\mathfrak{g}) = \sum_{d \ge 0} (\dim V(\mathfrak{g})_d) q^d$

 $Bq + 9q^2 + 19q^3 + 60q^4 + \dots)?$

The a of $\mathfrak{g} \otimes t^{-1} \mathbb{C}[t^{-1}]$ $x_i \in \mathfrak{g}, \ n_i > 0\}$

 $V(\mathfrak{g}) = S(\mathfrak{g} \otimes t^{-1}\mathbb{C}[t^{-1}]) = \operatorname{span}_{\mathbb{C}}\{(x_1 \otimes t^{-n_1}).$

degree 0: 1,

degree 1 : $x \otimes t^{-1}$,

degree 2: $x \otimes t^{-2}$, $(x \otimes t^{-1})^2$, $(x \otimes t^{-1})(y \otimes t^{-1})$

$$\operatorname{ch} V(\mathfrak{g}) = \sum_{d \ge 0} (\dim V(\mathfrak{g})_d) q^d = 1 + 3q + 9q^2 + 22q^3 + \dots$$

$$\bigvee$$

$$q^{1/4} (1 + 3q + 9q^2 + 19q^3 + \dots)$$

$$\dots (x_r \otimes t^{-n_r}) \mid x_i \in \mathfrak{g}, \ n_i > 0 \}$$

$$\dim V_0 = 1,$$

$$\dim V_1 = 3,$$

$$t^{-1}), \quad \dim V_2 = 9,$$

$$\widehat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}K \oplus \mathbb{C}D \quad \text{affine Kad}$$

$$[x \otimes t^m, y \otimes t^n] = [x, y] \otimes t^{m+n} + m \operatorname{tr}(xy)\delta_{m+n,\mathbb{C}}$$

$$[K, \widehat{\mathfrak{g}}] = 0$$

$$[D, x \otimes t^m] = mx \otimes t^m$$

$$\widehat{\mathfrak{g}} = (\mathfrak{g} \otimes t^{-1}\mathbb{C}[t^{-1}]) \oplus (\mathfrak{g} \otimes \mathbb{C}[t] \oplus \mathbb{C}K \oplus \mathbb{C}$$

$$\mathsf{Lie subalgebras}$$
For $k \in \mathbb{C}, \ V^k(\mathfrak{g}) := U(\widehat{\mathfrak{g}}) \otimes_{U(\mathfrak{g}[t] \oplus \mathbb{C}K}$

c-Moody algebra [Kac, Moody]

 $_0K$,

 $\mathbb{C}D)$

PBW Theorem $_{K \oplus \mathbb{C}D} \mathbb{C}_k \cong U(\mathfrak{g} \otimes t^{-1}\mathbb{C}[t^{-1}]) \cong V(\mathfrak{g}).$ $\mathfrak{g}[t] = 0, \ K = k \operatorname{id} , D = 0$

Facts

1) $V^k(\mathfrak{g})$ is not irreducible as an $\widehat{\mathfrak{g}}$ -module in general. 2) $V^k(\mathfrak{g})$ admits a unique simple quotient $L_k(\mathfrak{g})$, which is graded.

$$\operatorname{ch} L_k(\mathfrak{g}) = \sum_{d \in \mathbb{Z}_{\geq 0}} \dim L_k(\mathfrak{g})_d q^d$$

Kac-Wakimoto (1988)

For k = -4/3, $\operatorname{ch} L_k(\mathfrak{g}) = 1 + 3q + 9q^2 + 19q^3 + \dots$

$$= q^{-1/4} \frac{\eta(q^3)^3}{\eta(q)^3}$$

The factor $q^{1/4}$ has a representation theoretic meaning. and $q^{1/4} \operatorname{ch} L_k(\mathfrak{g})$ is called the normalized character of $L_k(\mathfrak{g})$

depends on k

We have seen both Higgs branch and Schur index are related with $\mathfrak{g} = \mathfrak{sl}_2$ || $L_{-4/3}(\mathfrak{g})$ \mathcal{N}

Question Can we relate $L_{-4/3}(\mathfrak{g})$ with \mathcal{N} ?

> $S(\mathfrak{g}) \cong \mathbb{C}[\mathfrak{g}^*] \twoheadrightarrow L_k(\mathfrak{g})/(\mathfrak{g} \otimes t^{-2}\mathbb{C}[t^{-1}])L_k(\mathfrak{g})$ $x_1 x_2 \dots x_r \mapsto (x_1 \otimes t^{-1}) \dots (x_r \otimes t^{-1}) +$

> > $R_{L_k(\mathfrak{g})} \cong \mathbb{C}[\mathfrak{g}^*]/I_k \qquad I_k \subset \mathbb{C}[\mathfrak{g}^*].$

 $X_{L_k(\mathfrak{g})} := \{\lambda \in \mathfrak{g}^* \mid f(\lambda) = 0 \ \forall f \in I\} \ \subset \mathfrak{g}^* = \mathfrak{g}$ the associated variety of $L_k(\mathfrak{g})$.

$$(\mathfrak{g}) =: R_{L_k(\mathfrak{g})}$$
$$+ (\mathfrak{g} \otimes t^{-2} \mathbb{C}[t^{-1}] L^k(\mathfrak{g})$$

an ideal

Is this a coincidence?

(vertex operator algebra/vertex algebra) VOA

- 1) Vertex algebras were introduced by Borcherds as a mathematical framework of TWO-DIMENSIONAL conformal field theories.
- 2) Typical examples of VOA/VA are $V^k(\mathfrak{g})$ and $L_k(\mathfrak{g})$.
- 4) For any VA V, one can define its associated variety X_V , which is a finite-dimensional Poisson variety ([A.2012]).

So a VOA can be regarded as a generalization of affine Kac-Moody algebras.

 $VOA \leftrightarrow 2D \ CFT$

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees2015

{hyperkähler cones}

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees2015

- 1) $\mathbb{V}(\mathcal{T})$ is NEVER unitary. In particular, \mathbb{V} is not surjective.
- 2) \mathbb{V} is expected to be injective.
 - In other words, $\mathbb{V}(\mathcal{T})$ is expected to be a complete invariant of \mathcal{T}

<u>Vertex algebras</u>

A vertex algebra is a vector space V equipped with $|0\rangle \in V$ (the vacuum vector), $T \in \text{End}(V)$ (the translation operator), a linear map $Y: V \to (\operatorname{End}(V))[[z, z^{-1}]], a$ such that

> $a(z)b \in V((z)),$ $|0\rangle(z) = \mathrm{id}, \ a(z)|0\rangle \in a + zV[[z]],$ $[T, a(z)] = (Ta)(z) = \frac{d}{dz}a(z),$ $(z - w)^n [a(z), b(w)] = 0$ for $n \gg 0$ in (Er

Example $V = V^k(\mathfrak{g}) = U(\widehat{\mathfrak{g}}) \otimes_{U(\mathfrak{g}[t] \oplus \mathbb{C}K \oplus \mathbb{C}I)}$ $|0\rangle = 1 \otimes 1, \qquad [T, x \otimes t^n] = -n$ $x(z) = \sum (x \otimes t^n) z^{-n-1} \quad \text{for } x \in$ $n{\in}\mathbb{Z}$

$$\mapsto a(z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{n-1},$$

$$\operatorname{nd}(V)[[z^{\pm}, w^{\pm}]] \quad (\text{locality}).$$

$$D^{D} \mathbb{C}_{k}$$
$$(x \otimes t^{n-1}), \ T | 0 \rangle = 0,$$
$$\exists \mathfrak{g} \hookrightarrow V^{k}(\mathfrak{g}) \ni (x \otimes t^{-1}) | 0 \rangle.$$

A vertex algebra V

→ A Poisson algebra $R_V = V/\operatorname{span}_{\mathbb{C}^4}$ $\bar{a} \cdot \bar{b} = \overline{a_{(-1)}b}$ $\{\bar{a}, \bar{b}\} = \overline{a_{(0)}b}.$

 $X_V = \operatorname{Spec} R_V.$

Example

 $V = V^{k}(\mathfrak{g}) = U(\widehat{\mathfrak{g}}) \otimes_{U(\mathfrak{g}[t] \oplus \mathbb{C}K \oplus \mathbb{C}D)} \mathbb{C}_{k}$ $R_{V} = V/t^{-2}\mathfrak{g}[t^{-1}]V \cong \mathbb{C}[\mathfrak{g}^{*}], \text{ and so } X_{V^{k}(\mathfrak{g})} = \mathfrak{g}^{*}.$ The surjection $V^{k}(\mathfrak{g}) \to L_{k}(\mathfrak{g})$ induces a surjection $R_{V^{k}(\mathfrak{g})} \to R_{L_{k}(\mathfrak{g})},$ and so $X_{L_{k}(\mathfrak{g})} \subset X_{V^{k}(\mathfrak{g})} = \mathfrak{g}^{*}, G$ -invariant, conic.

A Poisson algebra $R_V = V/\operatorname{span}_{\mathbb{C}}\{a_{(-2)}b \mid a, b \in V\}, (Zhu's C_2-algebra)$

An associated variety of a VOA is a Poisson variety. From Beem-Rastelli conjecture it follows that if a VOA V comes from a 4D theory, then X_V should have a finitely many symplectic leaves.

A.-Kawasetsu 2018

If X_V has many symplectic leaves, then the normalized character $\chi_V(q)$ satisfies a modular linear differential equation.

certain modularity of Schur indices (important in physics) \Rightarrow

Beem-Rastelli conjecture

(boundary) admissible representations $L_k(\mathfrak{g})$ of $\widehat{\mathfrak{g}}$, $k + h^{\vee} \in \mathbb{Q}_{>0}$,

$$X_{L_k(\mathfrak{g})} = \overline{\mathbb{O}}_k, \quad \exists nilpotent orbit$$

admisinle W-algebras $\mathcal{W}_k(\mathfrak{g}, f)$

 $X_{\mathcal{W}^k(\mathfrak{g},f)} = \overline{\mathbb{O}}_k \cap \mathcal{S}_f, \quad \text{nilpotent Slodowy slice} \quad [A.2015]$

 $\mathcal{S}_f = e + \mathfrak{g}^f, \{e, h, f\} \mathfrak{sl}_2$ -triple.

[Song-Xie-Yan2015]

[A.2015] t \mathbb{O}_k

[Wang-Xie-2018, Xie-Yan2019]

Beem-Rastelli conjecture is a physical conjecture in general,

because 4D $\mathcal{N} = 2$ SCFT is not mathematically defined.

theory of class S_{w} [Gaiotto 2012] six

obtained by "compatifying" a 6D theory on a punctured Riemann surface Σ

 $S_G(\Sigma)$ G: flavor symmetry group (complex semisimple group)

 \exists mathematical definition of Higgs $(S_G(\Sigma))$

[Moore-Tachikawa 2012, Ginzburg-Kazhdan, Braverman-Finkelberg-Nakajima 2018]

Enough to describe the Higgs branches for genus zero Σ .

 $MT_{G,r} = Higgs(S_G(\mathbb{P}^1 \text{ with } r\text{-puncturres})),$ equipped with Hamiltonian action of r-copies of G.

 $\mathrm{MT}_{G,2} = T^*G,$ $MT_{G,1} = G \times S,$ $\mathcal{S} = e + \mathfrak{g}^f$, Kostant-Slodowy slice, ($\{e, h, f\}$ a regular \mathfrak{sl}_2 -triple) $(\mathrm{MT}_{G,r} \times \mathrm{MT}_{G,s}) / / \Delta(G) \cong \mathrm{MT}_{G,r+s-2}$ symplectic reduction

(associativity)

Examples

associativity for r = s = 3

 $((\mathbb{C}^2)^{\otimes 3} \times (\mathbb{C}^2)^{\otimes 3}) / / \Delta(SL_2(\mathbb{C})) \cong \overline{\mathbb{O}}_{D_A, min}$

ADHM construction for $\overline{\mathbb{O}}_{D_4,min}$ [Atiyah-Drinfeld-Hitchin-Manin]

$$G = SL_3(\mathbb{C})$$
$$\Sigma = \overbrace{\mathbf{x} \times \mathbf{x}}$$

$$MT_{G,3} = \overline{\mathbb{O}}_{E_6,min},$$

In general, there is no simple description of $MT_{G,r}$.

minimal nilpotent orbit closure in E_6 .

Construction of VOAs (chiral algebras of class \mathcal{S})

the large center (the Feigin-Frenkel center) of $\tilde{U}_{-h^{\vee}}(\hat{\mathfrak{g}})$ exists.

VOA V such that $X_V = X$,

such that the induced morphism $X_V \to X_{V^k(\mathfrak{g})} = \mathfrak{g}^*$ coincides with μ ,

 $\mathcal{D}_{G,k}^{ch}$, algebra of chiral differential operators on G at level k, [Malikov-Schechtman-Vaintrob1999, Beilinson-Drinfeld, Arhipov-Gatisgory2002]

)
$$(X_{H^0_{DS}(\mathcal{D}^{ch}_{G,k})} \cong G \times \mathcal{S}),$$

 $H^{\infty/2+\bullet}(\widehat{\mathfrak{g}},\mathfrak{g},V\otimes W) \quad (X_V\cong X,\ X_W\cong Y),$

 $X_{H^{\infty/2+\bullet}(\widehat{\mathfrak{g}},\mathfrak{g},V\otimes W)} \cong (X_V \times X_W) / / \Delta(G)$ in nice cases.

 $k = -h^{\vee} =$ the critical level

There exists a unique family of VOAs $\{V_{G,r}\}$ such that 1) \exists VA homomorphism $V^{-h^{\vee}}(\mathfrak{g})^{\otimes r} \to \mathbf{V}_{G,r}$, and the action of $(\mathfrak{g} \otimes \mathbb{C}[t])^{\otimes r}$ on $\mathbf{V}_{G,r}$ integrates to the action of $G[[t]]^r$; 2) $\mathbf{V}_{G,2} = \mathcal{D}_{G,-h^{\vee}}^{ch}, \quad \mathbf{V}_{G,1} = H_{DS}^0(\mathcal{D}_{G,-h^{\vee}}^{ch}),$ 3) $H^{\infty/2+i}(\widehat{\mathfrak{g}},\mathfrak{g},\mathbf{V}_{G,r}\otimes\mathbf{V}_{G,s})\cong\delta_{i,0}\mathbf{V}_{G,r+s-2}.$ Moreover,

4) Each
$$\mathbf{V}_{G,r}$$
 is simple, and its central charge is dim $\mathrm{MT}_{G,r} - 24(r-2)(\rho \mid \rho^{\vee}),$
5) $\mathrm{tr}_{\mathbf{V}_{G,r}}(q^{L_0}z_1z_2\ldots z_r) = \sum_{\lambda\in P_+} \left(\frac{q^{\langle\lambda,\rho^{\vee}\rangle}\prod_{j=1}^{\infty}(1-q^j)^{\mathrm{rk}\,\mathfrak{g}}}{\prod_{\alpha\in\Delta_+}(1-q^{\langle\lambda+\rho,\alpha^{\vee}\rangle})} \right)^{r-2} \prod_{k=1}^r \mathrm{tr}_{\mathbb{V}_{\lambda}}(q^{-D}z_k),$

6) $X_{\mathbf{V}_{G,r}} \cong \mathrm{MT}_{G,r}$.

In the above, 1)-5) are the properties that $\mathbb{V}(S_G(\Sigma))$ should have.

[Beem-Peelaers-Rastelli-van-Rees 2015]

 $\mathbb{V}(S_G(\Sigma)) = \text{the } \beta \gamma \text{ system associated with the symplectic vector space } (\mathbb{C}^2)^{\otimes 3}.$

affinization of the Weyl algebra

Conjectured in [Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees2015]

$$G = SL_3(\mathbb{C})$$
$$\Sigma = \overbrace{\mathbf{x} \times \mathbf{x}}$$

$$\mathrm{MT}_{G,3} = \overline{\mathbb{O}}_{E_6,min},$$

 $\mathbb{V}(S_G(\Sigma)) = \mathbf{V}_{G,3} = L_{-3}(E_6).$
Conjectured in [Been

The isomorphism $X_{L_{-2}(D_4)} \cong \overline{\mathbb{O}}_{D_4,min}$ and were previously shown in [A.-Moreau2016].

In general $\mathbf{V}_{G,r}$ is a W-algebras in the sense that it is generated by a Lie algebra, and there is no simple description in general.

m-Lemos-Liendo-Peelaers-Rastelli-van Rees2015]

d
$$X_{L_{-3}(E_6)} \cong \overline{\mathbb{O}}_{E_6,min}$$

It is expected that the representation theory of $\mathbb{V}(\mathcal{T})$ is closely connected with the Higgs branch.

A 4D $\mathcal{N} = 2$ SCFT \mathcal{T} also has a Coulomb branch, which is the moduli space of G-Higgs bundles on Σ .

[Dedushenko-Gukov-Nakajima-Pei-Ye2018]

Thank you for your attention!